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Abstract. 

This paper presents an improved algorithm for the proposal distribution. The proposed algorithm enhances the range of 

filter values, the precision of re-sampling, and the accuracy of the map building. Additionally, the computational 

overhead is reduced, thereby optimizing the issue of the particle degeneration. The comparative experiments demonstrate 

that the proposed algorithm enhances the mapping precision and speed. 
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1 Introduction 

Currently, the traditional RBPF (Rao-Blackwellised 

Particle Filters) algorithm uses particle filtering algorithm 

to estimate the status of the robot[1],[2].Traditional 

positioning and environmental map acquisition still 

requires a lot of human resources to accurately measure the 

surrounding environment. The process is time-consuming 

and labor-intensive, with poor results and errors. 

Therefore, the method of simultaneous localization and 

mapping (SLAM) is a hot topic in the current research of 

mobile robots. At present, the implementation of 2D laser 

SLAM is mainly divided into two methods: filter-based 

and nonlinear optimization-based. The filter-based method  

includes the extended Kalman filter (EKF), the unscented 

Kalman filter (UKF), and the particle filter (PF). The 

SLAM method based on nonlinear optimization mainly 

uses the framework of graph optimization to implement 

SLAM. The Gmapping algorithm is an algorithm for 

simultaneous localization and mapping of mobile robots. It 

is widely used in mobile robots, unmanned vehicles, 

drones and other fields, especially in navigation and 

exploration tasks in unknown environments. Its real-time 

and effectiveness make it one of the important tools in the 

field of SLAM. Gmapping is a SLAM algorithm based on 

2D LiDAR using the RBPF algorithm to complete the 

construction of a two-dimensional grid map. It can build 

indoor maps in real time, and the amount of calculation 

required to build small scene maps is small and the 

accuracy is high. Gmapping is mainly based on the particle 

filter algorithm, which estimates the position and posture 

of the robot through LiDAR data and robot motion 

information. The ability to process sensor data in real time 

and generate a two-dimensional environment map is very 

important for mobile robots that need to navigate in 

unknown environments. This method uses multiple 

"particles" to represent possible states and updates these 

states based on sensor data. The advantages of Gmapping 

are real-time and high efficiency. It can build indoor 

environment maps in real time, with less calculation in 

small scenes and higher map accuracy. 

 

Although Gmapping can generate maps in real time 

with high accuracy, it is inevitable that particles will 

degrade when estimating the robot's state in large scenes 

because a large number of particles are needed to estimate 

the robot's posture. Particles with larger weights will 

account for a larger proportion, and particles with smaller 

weights will gradually decrease or even disappear. In 

addition, frequent resampling steps will cause particles to 

gradually degrade, which will waste a lot of computing 

resources and affect the mapping effect. In 2007, Giorgio 

Griisetti and Cyril Stachniss [3] proposed an improved 

RBPF mapping algorithm to implement SLAM mapping, 

that is, an improved Rao-Blackwellised particle filter 

mapping algorithm using an improved proposed 

distribution and an adaptive resampling method. This 

improved RaoBlackwellised particle filter algorithm 

improves the performance of the algorithm, effectively 

reduces the computational complexity, and alleviates the 

particle degradation problem by using a small number of 

particles for state estimation [4],[5],[6]. However, the 

algorithm still relies on a high number of particles in an 

environment with large maps and high local similarity, and 

errors will occur in mapping. The robustness of the 

algorithm needs to be improved, and how to effectively 

limit the spatial range of the Proposal distribution to 

improve sampling efficiency has not been fully explored. 

 

This paper is structured as follows: the second part 

describes the Gmapping algorithm; the third part describes 

the idea of the improved algorithm; the fourth part 

conducts a reasonable data analysis of the results of the 

optimization algorithm; and the fifth part summarizes the 

whole paper. 
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2 DRP-GMapping Core Idea 

In order to overcome the problems of excessive 

computation and particle degradation in SLAM methods 

based on conventional particle filters, this paper further 

optimizes the proposal distribution by optimizing the 

particle formula of the particle swarm algorithm, restricts 

the proposal to a small valid area, and dynamically adjusts 

the proposal distribution in combination with the 

observation information of the latest frame of the robot, 

and then samples this valid area. This allows the odometer 

distribution to match the lidar distribution, greatly 

improves the sampling accuracy, reduces the number of 

particles collected, and greatly alleviates the particle 

degradation problem.The fig.1 shows the comparison of 

particle filters. 

 
Fig.1 Particle filter comparison 

In order to solve the efficiency problem in particle 

filtering, we proposed a method to improve the efficiency 

of particle filtering by limiting the effective area of 

proposal distribution. Specifically, the traditional proposal 

distribution is generally widely distributed in the entire 

state space, while we limit the proposal distribution to a 

narrower effective area. 

The specific steps of this method are to dynamically 

estimate the possible activity range of the robot through the 

robot's motion model, local map information and sensor 

data. The range is determined by the robot's current 

position, movement speed, and obstacle information in the 

surrounding environment. By restricting particle 

generation to only this effective region, the distribution 

range of particles in state space can be significantly 

reduced. Specifically, at each moment, the current position 

of the robot is first predicted through the robot motion 

model (such as the differential drive model), and combined 

with the status information of the previous moment, an 

estimate of the current position is obtained. Combined with 

the observation information of the latest frame, the 

possible range of activities of the robot is evaluated. For 

example, by analyzing the location of obstacles in lidar 

data, the proposal distribution is restricted to areas where 

obstacles do not exist. Finally, based on the robot's motion 

estimation and recent observations at the current moment, 

the size and position of the effective area are dynamically 

adjusted. The shape of the effective area can be a circle or 

a rectangle, and the range is adjusted in real time based on 

the robot's motion status and sensor feedback. 

Therefore, we need to keep the number of particles at a 

relatively small value to improve the pose quality of 

proposal distribution sampling. The specific changes are: 

(1) 
After optimization, the Proposal distribution is more 

similar to the Gaussian distribution represented by

( )， , so the particle propagation is modified from the 

kinematic model sampling to the sampling of the Gaussian 

distribution, and the Gaussian distribution is: 

(2) 
The weight is calculated as follows： 

(3) 

(4) 

(5) 

3 Optimization result analysis 

In order to verify the effectiveness of the proposed 

method, we conducted comparative experiments in various 

environments. Experimental environments include: Static 

indoor environment: a standard indoor environment 

consisting of multiple rooms and corridors. Complex 

large-scale environments: Large indoor environments with 

multiple rooms, corridors, and obstacles. In the 

experiment, we used odometry-based data and compared 

the performance of the traditional GMapping algorithm 

and the improved algorithm in terms of positioning 

accuracy, mapping accuracy, computational efficiency, 

and robustness. Experimental results show that the 

optimized GMapping algorithm shows excellent 

performance in all test scenarios. Compared with 

traditional methods, the improved algorithm improves 

positioning accuracy by 15%-25% in static and dynamic 

environments. In large-scale and complex environments, 

the maps generated by the optimized algorithm are more 

accurate, with errors reduced by about 20%. Due to the 

limitation of particle sampling space, the calculation 

efficiency is significantly improved, and the processing 

time is reduced by 10%-15% on average. In a dynamic 

obstacle environment, the optimized algorithm shows 

higher robustness, can quickly adapt to environmental 

changes, and has smaller fluctuations in positioning 

accuracy.The experimental results are shown in Fig.2. 
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(a) 

 

 
(b) 

 

Fig.2.(a) Gmapping algorithm grid map; 

(b) improved Gmapping algorithm grid map.  
 

 
Simple open 

environment 

Complex 

obstacle 

environment 

Traditional Gmapping 

average error (m) 0.23 0.38 

Improve the average error 

of the algorithm (m) 0.18 0.30 

Reduction rate (%) 21.7 21.0 

Traditional Gmapping is 

time-consuming (s) 
1.00 3.1 

Improved algorithm 

time-consuming(s) 
0.85 2.7 

Improvement rate (%) 15 12.9 

4 Conclusion 

This paper proposes a GMapping algorithm 

optimization method that optimizes the Proposal 

distribution algorithm in the effective area and combines 

the observation information of the latest frame. Through 

this optimization, the efficiency of particle filtering is 

significantly improved, and the positioning accuracy and 

mapping accuracy are improved. Experimental results 

show that this method effectively alleviates the problem of 

particle degradation, improves the accuracy of resampling, 

and greatly reduces mapping errors. At the same time, the 

method in this paper is currently only used in simulation 

experiments of a single robot. In the future, we will further 

study the application of this method in actual environments 

and extend it to collaborative positioning and mapping 

research on multiple robots. 
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