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Abstract 

The Bi-RRT* algorithm is a path planning algorithm for industrial robots. In this paper, Bi-RRT* algorithm is studied 

and improved. The improved Bi-RRT* algorithm reduces the iteration time by introducing artificial potential field 

method. And, the path cost is reduced and the path smoothness is improved by introducing greedy algorithm. Finally, 

the improved Bi-RRT* algorithm was simulated in three dimensional environment, and the superiority of the 

improved Bi-RRT* algorithm was demonstrated by comparative experiments.  
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1. Introduction 

Path planning is a crucial technique for industrial robots 

[1], [2]. The purpose of path planning is to generate a 

collision-free path from the start point to the target point. 

Due to the complexity and variability of the planning 

environment, how to quickly plan a collision-free optimal 

path has become a hot topic in current research. The RRT 

algorithm [3] (Rapidly Expanding Random Tree, rapidly 

exploring random tree) is a stochastic algorithm that can be 

directly applied to the planning of non-completely 

constrained systems, and is particularly suited to high-

dimensional systems with multiple degrees of freedom. 

Therefore, the RRT algorithm has an advantage over other 

algorithms in the three dimensional environment. 

Subsequently, the RRT* algorithm [4] is proposed to 

optimize paths through parent node re-selection and 

rewiring operations. In order to improve the fastness of 

RRT* algorithm, bidirectional RRT* (Bi-RRT*) algorithm 

[5] is proposed. However, the Bi-RRT* algorithm still 

suffers from long iteration time, high path cost and poor 

smoothing. Therefore, in the following, we will introduce 

the Bi-RRT* algorithm and improve the algorithm.  

 

The rest of this article is organized as follows. The 

second section introduces the principle of Bi-RRT* 

algorithm and describes the improvement scheme, after 

which the pseudo-code of the algorithm is given. The third 

part conducts comparative experiments between the 

improved Bi-RRT* algorithm and the Bi-RRT* algorithm, 

and demonstrates the superiority of the improved Bi-RRT* 

algorithm. The fourth part summarizes the main content of 

this paper, and introduces future work.  

2. Principles of Bi-RRT* algorithm and 

improvement methods. 

The Bi-RRT* algorithm has a bi-directional search and 

optimization path. However, the randomness of its 

sampling points is too strong, the path optimization time is 

too long, and the smoothness of the generated path is too 

low. Therefore, we use APF algorithm to generate 

sampling points and reduce the randomness of sampling 

points. For the path part, a greedy algorithm based on 

triangular inequalities is used for optimization. 

2.1. Bi-RRT* algorithm 

For RRT algorithm, in each iteration, select a start point 

as the root node. Generate a random sample point 

𝑄𝑟𝑎𝑛𝑑  in the configuration space, find the nearest node 

𝑄_𝑛𝑒𝑎𝑟  to the sample point 𝑄𝑟𝑎𝑛𝑑 , connect 𝑄_𝑟𝑎𝑛𝑑 

and 𝑄_𝑛𝑒𝑎𝑟 with a specified step step to generate a new 

node 𝑄_𝑛𝑒𝑤, if there is no collision then the new node will 

be added to the tree, and finally, judge the value of the 

distance domain from the end point, if it is less than the 

value of the set domain, then it means that a feasible path 

is found. Backtrack the path and output the path. 

 

Compared to the RRT algorithm, RRT* algorithm after 

generating a new node to the new node as the center of the 

circle, to specify R as the radius of a circle, in the radius 

circle of the nodes in the tree, to re-select the parent node, 

selecting the parent node with the lowest overall path cost. 

As shown in Fig.1, the blue line is the base step, and the 

node closest to within the red circle with as the center of 

the circle and a radius of R is node 10, connecting node 10 
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to node 11 with a blue line of length of the base step. 

However, in order to find the node with the lowest cost, the 

RRT* algorithm iterates over the node 7, node 8, and node 

9 within the red circle, and re-selects the parent node. From 

Fig. 1, node 7 is selected as the parent of the new node 11 

with the lowest total cost of the path, the connection of 

node 11 to node 10 is deleted, and the green line is the path 

of node 7 connecting the new node 11, and node 7 is used 

as the parent of node 11, which is the process of re-

selecting the parent of the node by RRT*. At the same time, 

nodes around in the existing tree are reconnected to that is 

the new parent node, which reduces the overall path cost. 

 

Compared with the RRT* algorithm, the Bi-RRT* 

algorithm simultaneously constructs two trees from the 

start and goal points until the structures of these two trees 

intersect. 

 
Fig.1. RRT* algorithm 

2.2. APF sample  

Since the RRT algorithm has too much randomness in 

the random generation of sampling points, we use the APF 

algorithm to reduce the randomness of sampling points. 

After the sampling points are randomly generated, we 

change the positions of the sampling points according to 

the combined force of the gravitational force of the 

sampling points on the target point and the repulsive force 

on the obstacles. 

 

The goal point produces attraction potential energy 𝑈𝑎𝑡𝑡 

to the sampling point 𝑄𝑟𝑎𝑛𝑑 , and the obstacle produces 

repulsion potential energy 𝑈𝑟𝑒𝑝  to the sampling point, and 

the combined potential energy 𝑈 = 𝑈𝑎𝑡𝑡 + 𝑈𝑟𝑒𝑝 . The 

𝑄𝑟𝑎𝑛𝑑  point advances towards the direction of the 

combined force of attraction of the target point and 

repulsion of the obstacle, F which is the negative gradient 

of the combined potential energy. 

 

The point 𝑄𝑟𝑎𝑛𝑑  is subjected to gravitational and 

repulsive potentials as shown in Eq. (1). 

 {
𝑈𝑎𝑡𝑡 =

1

2
 𝑘𝑎  [(𝑥 − 𝑥𝑔)2 − (𝑦 − 𝑦𝑔)2]

𝑈𝑟𝑒𝑝 =
1

2
 𝑘𝑟  [

1

√(𝑥−𝑥𝑜)2−(𝑦−𝑦𝑜)2
−

1

𝑝0
]  

      (1)  

Where 𝑘𝑎  represents the scaling factor of the gravitational 

potential field, which is used to regulate the magnitude of 

the attraction potential energy. 𝑘𝑟 represents the scaling 

factor of the repulsive potential field, which is used to 

regulate the magnitude of the repulsive potential energy. 

(𝑥𝑔 , 𝑦𝑔  ) represents the co-ordinates of the target point, 

and (𝑥𝑜, 𝑦𝑜  ) represents the co-ordinates of the obstacle. 

𝑝0 represents the maximum distance at which the obstacle 

exerts a repulsive force on the 𝑄𝑟𝑎𝑛𝑑  point. 

 

Force is a negative gradient of potential energy, as 

shown in the Eq. (2) and Eq. (3). The gravitational and 

repulsive forces are calculated as shown in the equation. 

𝐹 = −𝛻 U               (2)                

{
𝐹𝑎𝑡𝑡 = −𝑘𝑎 [(𝑥 − 𝑥𝑔) 𝑖 + (𝑦 − 𝑦𝑔) 𝑗]

𝐹𝑟𝑒𝑞 = − 𝑈𝑟𝑒𝑝,𝑥
 ′  𝑖  −  𝑈𝑟𝑒𝑝,𝑦

 ′  𝑗                
      (3) 

As shown in the Fig.2, after the sample point 𝑄𝑟𝑎𝑛𝑑 is 

generated, their combined gravitational and repulsive 

forces are calculated using the artificial market method and 

the 𝑄𝑟𝑎𝑛𝑑_𝐴𝑃𝐹  point is regenerated. 

 

Fig.2. RRT* algorithm 

The fusion of the APF algorithm in complex 

environments not only enhances the obstacle avoidance 

ability of the algorithm, but also makes the tree generated 

by the algorithm grow towards the target point. This 

reduces the iteration time and the path cost of the algorithm. 

2.3. The greedy algorithm 

The principle of the greedy algorithm is to achieve 

global optimality through local optimality, using a step-by-

step approach to constructing the optimal solution. As 

shown in Fig.3, after the algorithm re-selects the less costly 

node 7 as the parent node, it then goes to reconnect its 

grandfather node 6, and if there is no collision, its 

grandfather node 6 serves as his parent node. In this way, 

the algorithm expands the tree branches optimally at each 

step, which will drastically reduce the path cost and 

increase the smoothness of the path. 
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Fig.3. Greedy algorithm 

Based on the above improvements, Improved Bi-RRT* 

algorithm is designed and the pseudo code is shown in 

Algorithm 1. 

 

3. Simulation 

In this section, two groups of three-dimensional 

simulations are designed in MATLAB. Two experiments 

are taken with 2000 sampling points in simple and complex 

obstacle environments, respectively. The experiment starts 

at [10, 10, 10] and ends at [900 900 900].  

 
Fig.4. Simulation in simple environment 

Table 1: Simulation date in simple environment 

 Metric Bi-RRT* Improved Bi-RRT* 

The first path Path cost/pix 1852.25 1618.25 

 Time/s 0.52 0.28 

The last path Path cost/pix 1791.33 1541.93 
 Time/s 1.74 1.59 

 

Fig.5. Simulation in complex environment 

Table 2: Simulation date in complex environment 

 Metric Bi-RRT* Improved Bi-RRT* 

The first path Path cost/pix 1793.20 1621.54 

 Time/s 0.46 0.29 

The last path Path cost/pix 1756.51 1554.11 
 Time/s 1.85 1.61 

As shown in Fig.4 and Fig.5, improved Bi-RRT* 

algorithm has lower path cost and better smoothing 

compared to Bi-RRT* algorithm. As can be seen from 

Table 1, the time for the first path generation of improved 

Bi-RRT* algorithm is reduced by 46% and the path cost is 

reduced by 13% compared to Bi-RRT* algorithm in simple 

environment. And, the time for the last path generation of 

improved Bi-RRT* algorithm is reduced by 9% and the 

path cost is reduced by 14% compared to Bi-RRT* 

algorithm in simple environment. As can be seen from 

Table 2, the time for the first path generation of improved 

Bi-RRT* algorithm is reduced by 37% and the path cost is 

reduced by 10% compared to Bi-RRT* algorithm in 

complex environment. And, the time for the last path 

generation of improved Bi-RRT* algorithm is reduced by 

13% and the path cost is reduced by 12% compared to Bi-

RRT* algorithm in complex environment. These 

experimental results prove that the improved Bi-RRT* 

algorithm is more efficient compared to the Bi-RRT* 

algorithm. 

4. Conclusion 

This paper introduces the principle of the Bi-RRT* 

algorithm and improves the Bi-RRT* algorithm. By 

introducing the APF algorithm, the exploration ability of 

the Bi-RRT* algorithm in complex space is enhanced, and 

the generated sampling points are more favorable for the 

generation of optimal paths. In the path generation stage, 

the greedy algorithm is used to continuously reduce the 

path cost and increase the smoothness of the path. Finally, 

the improved Bi-RRT* algorithm is compared with the Bi-

RRT* algorithm in MATLAB, and the experiment proves 
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that the improved Bi-RRT* algorithm requires less 

iteration time and generates a lower path cost and has better 

smoothness. Since the improved Bi-RRT* algorithm does 

not take into account the optimization of obstacle 

avoidance for dynamic obstacles, in the future, we will 

improve the improved Bi-RRT* algorithm by improving 

the dynamic obstacle avoidance algorithm to improve the 

exploration ability in dynamic space. 
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