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Abstract 

Understanding the mechanism of visual illusion generation through Convolutional Neural Networks (CNNs) that 

mimic the receptive fields of the visual cortex can contribute to elucidating the mechanisms of visual information 

processing in the brain. In our previous research, we demonstrated the potential for Fraser's spiral illusion to manifest 

in CNNs. In this study, we focused on the depth of the CNN layer structure and examined the impact of the number 

of layers on the manifestation of the visual illusion. We provided 14 types of spiral illusion images to three different 

CNN patterns with varying layer structures and tasked them with distinguishing between concentric circles and spirals. 

The results indicated that CNNs with fewer layers were more prone to the illusion, whereas CNNs with more layers 

were less likely to exhibit the illusion. These results suggest that the number of layers in a CNN influences the 

manifestation of visual illusions. 
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1. Introduction 

Convolutional Neural Networks (CNNs), which mimic 

the local receptive fields of the visual cortex, have been 

extensively studied and utilized in various fields [1], 

including image recognition [2]. In human vision, under 

certain conditions, phenomena known as "visual 

illusions" occur, where shapes, sizes, lengths, colors, and 

directions are perceived differently from their physical 

reality. The occurrence of visual illusions suggests that 

visual information from the retina is not transmitted 

directly to the brain but undergoes some processing. 

Therefore, investigating whether CNNs can exhibit 

illusions and understanding the mechanisms behind them, 

could contribute to elucidating the mechanisms of visual 

information processing. 

In the study by Watanabe et al., experiments were 

conducted using deep neural networks to observe motion 

from "rotating snakes" images, a type of motion illusion, 

to determine if the same illusions observed in humans 

could be replicated [3]. Motion illusions are phenomena 

where stationary images are perceived as moving. In the 

case of "rotating snakes," disk-shaped images resembling 

snakes appear to rotate. The results showed that the 

neural network predicted rotational motion from the 

"rotating snakes" images, indicating that deep neural 

networks can exhibit illusions. 

Our previous research also demonstrated the potential 

for Fraser's spiral illusion to occur in CNNs [4]. Fraser's 

spiral illusion is a phenomenon where concentric circles 

are perceived as a spiral. This study suggested that the 

structure of the CNN model influences the occurrence of 

visual illusions. Horikawa et al. compared CNNs with the 

human brain and reported homology in information 

representation between each layer of the CNN and each 

region of the human visual cortex [5]. This implies that 

altering the number of convolutional layers in CNNs 

could affect the occurrence of illusions. Additionally, 

Simonyan et al. reported that the deeper the layers of a 

CNN, the higher the accuracy of image classification [6]. 

Therefore, in our research, we hypothesized that 

increasing the depth of the layers would enhance image 

discrimination accuracy, leading to the correct 

identification of physically concentric images as 

concentric, thereby reducing the occurrence of visual 

illusions. In this study, we focused on the depth of the 

CNN layer structure and examined the influence of the 

number of layers on the occurrence of visual illusions. 

2. Methodology 

2.1. CNN models 

The CNN constructed in this study is composed of 

several layers, including convolutional layers, 

normalization layers, and pooling layers. In the input 

layer, the pixel values (0-255) of the input image are 

provided. The convolutional layers extract local features 

by multiplying the input values with the filter values and 

summing the neighboring output values. The results of 

the convolution are converted into output signals using an 

activation function. The ReLU (Rectified Linear Unit) 

function was used as the activation function. The ReLU 

function outputs the input value directly if it is greater 

than 0, and outputs nothing if it is 0 or less. 

The pooling layers perform down-sampling to reduce 

the complexity of the subsequent layers, which is 

equivalent to reducing the resolution in image processing 

[7]. This helps to mitigate the effect on the output results 
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when the input image is slightly shifted. In this study, 

max pooling was used. Max pooling divides the image 

into small rectangular regions and outputs only the 

maximum value within each region to the next layer. 

Batch Normalization, developed by Serger et al., is a 

technique to accelerate deep learning [8]. It also reduces 

dependency on initial values and helps prevent 

overfitting. Dropout is a technique that randomly deletes 

neurons during training to prevent overfitting. 

These layers were combined to construct the CNN 

model. The structure of the three models constructed in 

this study is shown in Fig. 1. The dimension of the input 

layer is 150 x 150 for all models. Grayscale images of 

150 x 150 pixels were provided as input, and the images 

passed through multiple convolutional layers (Conv2d in 

Fig. 1), Batch Normalization layers (BatchNormalization 

in Fig. 1), and pooling layers (MaxPooling in Fig. 1). 

Finally, the images passed through a global average 

pooling layer (GlobalAveragePooling in Fig. 1), Dropout 

(Dropout in Fig. 1), and a fully connected layer (Dense in 

Fig. 1) to output either "0" or "1". An output value of "0" 

indicates a concentric circle, while "1" indicates a spiral. 

 
Fig.1 Composition of the 3 CNN models 

The convolutional layers, Batch Normalization layers, 

and Max Pooling layers were combined into a "block," 

and models with different depths were constructed by 

combining four, three, and five blocks. The 

configurations of these models are shown in Fig. 1 (a), 

(b), and (c), respectively. Each section separated by 

dotted lines in Fig. 1 (c) represents one block. In our 

previous research, we demonstrated the potential for 

spiral illusion occurrence using a model composed of 

four blocks (4-block model in Fig. 1 (a)) [4]. We 

investigated whether visual illusions occurred in these 

three models and whether there were any changes in the 

occurrence of visual illusions. 

2.2. Computing Environment 

In this study, we utilized Python (ver. 3.9.6), a 

programming language rich in machine learning libraries, 

and TensorFlow (ver. 2.5.0), an open-source machine 

learning software library developed by Google, for 

machine learning using CNNs. The computer used for 

this study had the following specifications: OS - 

Windows 10, CPU - Intel Xeon X3480, GPU - NVIDIA 

GeForce RTX3060, and RAM - 20.0GB. 

2.3. Training Datasets 

To train the constructed CNN to distinguish between 

spiral and concentric circle images, we created a training 

dataset. First, we generated 50 images each of 150 x 150 

pixels for both concentric circles and spirals. 

Additionally, we augmented these images by applying 

horizontal and vertical shifts, flips, and scaling. Including 

the original images, we prepared 250 images each for 

concentric circles and spirals. From these, 200 images of 

each type were randomly selected as training data, and 50 

images of each type were selected as test data. Fig. 2 

shows some of the created training data images. Fig. 2 (a) 

shows concentric circle images, and Fig. 2 (b) shows 

spiral images. In addition to images of concentric circles 

and spirals drawn with solid and dashed lines, we created 

images with features seen in spiral illusions. The left side 

of Fig. 2 shows images drawn with solid lines, the center 

with dashed lines, and the right side shows images 

combining black and white lines and triangular endpoints, 

similar to those seen in spiral illusion images (e.g., Fig. 3 

06). We also prepared patterns with different 

combinations of background and line colors, such as 

white and black, black and white, and gray and black. 

Note that the training dataset does not include spiral 

illusion images. 

 
Fig.2 Example of training data set 
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2.4. Validation Images 

After training the CNN model, we provided 14 spiral 

illusion images as input and checked the output. The 

spiral illusion images used for validation are shown in Fig. 

3. These images were prepared with reference to those 

published on the "Akiyoshi Kitaoka's Illusion Pages" [9]. 

The images were standardized to a size of 150 pixels by 

150 pixels and converted to 256-level grayscale. Images 

01 to 14 in Fig. 3 are actually concentric circles, but they 

exhibit a visual illusion phenomenon where they appear 

spiral when viewed by humans. 

 
Fig.3 Spiral illusion images for verification 

3. Results and Discussion 

We checked the changes in the loss function values and 

accuracy with respect to the number of training iterations 

during the training process of the constructed CNN 

models. Cross-entropy error was used as the loss function. 

For all three models shown in Fig. 1, it was confirmed 

that the loss function values and accuracy for both the 

training and test data stabilized after 300 epochs, so the 

models were trained for up to 500 epochs for validation. 

To eliminate the possibility of random classification as 

spirals, we randomly changed the initial values and 

repeated the training and validation 10 times. Fig. 4 

shows the number of times each validation image was 

classified as a visual illusion. The vertical axis represents 

the number of times the image was classified as a spiral 

out of 10 validations, and the horizontal axis corresponds 

to the image names shown in Fig. 3. The results for the 4-

block model, 3-block model, and 5-block model are 

shown in blue, red, and yellow, respectively. 

 

Fig.4 Comparison of the number of spiral illusion 

occurrences among three models 

For the 4-block model (blue in Fig. 4), 8 out of 14 

images (57%) were consistently classified as spirals in all 

10 trials, indicating the occurrence of spiral illusions. 

Additionally, 4 out of 14 images (29%) were consistently 

classified as concentric circles, indicating no illusion. 

The remaining images had mixed classifications. 

For the 3-block model (red in Fig. 4), 8 out of 14 images 

(57%) were consistently classified as spirals in all 10 

trials, indicating the occurrence of spiral illusions. 

Additionally, 2 out of 14 images (14%) were consistently 

classified as concentric circles, indicating no illusion. 

For the 5-block model (yellow in Fig. 4), 2 out of 14 

images (14%) were consistently classified as spirals in all 

10 trials, indicating the occurrence of spiral illusions. 

Additionally, 4 out of 14 images (29%) were consistently 

classified as concentric circles, indicating no illusion. 

The 3-block model showed a similar rate of spiral 

classification as the 4-block model. However, images 

"02" and "07", which were not classified as spirals in the 

4-block model, were classified as spirals in the 3-block 

model. Additionally, image 14 was classified as a spiral 

more frequently in the 3-block model than in the 4-block 

model. The 5-block model classified images as spirals 

less frequently than the 4-block model. These results 

suggest that deeper layers may reduce the occurrence of 

visual illusions. However, it was not clearly 

demonstrated whether deeper layers lead to more 

physically accurate classifications. 

4. Conclusion 

In this study, we constructed CNNs with varying depths, 

trained them with concentric circle and spiral images, and 

used the models to test for the occurrence of spiral 

illusions. By comparing the results across different 

models, we found that deeper layers might reduce the 

occurrence of visual illusions. In the future, we plan to 

investigate the influence of changing the training images 

and further modifying the model depth on the occurrence 
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of illusions. Additionally, we aim to examine and 

compare the features extracted by each layer to 

understand the differences.  
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