
 

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

Prototype of RAGESS Which Is a Tool for Automatically Generating SwiftDiagram to Support 

iOS App Development 

Haruki Onaga*, Tetsuro Katayama*, Yoshihiro Kita†, 

Hisaaki Yamaba*, Kentaro Aburada*, Naonobu Okazaki* 

*Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 

 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan 
†Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki  

 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki, 851-2195 Japan 

E-mail: onaga@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp,  

yamaba@cs.miyazaki-u.ac.jp, aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp   

 

Abstract 

It is difficult to understand the structure of large and complex mobile applications. To support iOS app development, 

we proposed SwiftDiagram, a visualization of the static structure of Swift source code and confirmed its high 

usefulness. However, manually drawing SwiftDiagram is labor-intensive. This paper implemented a prototype of 

RAGESS (Real-time Automatic Generation of SwiftDiagram System), a tool that automatically generates 

SwiftDiagram by performing static analysis on Swift source code every time an iOS app build is successful. 

Keywords: Software visualization, Mobile application, Swift 

1. Introduction 

The smartphone and tablet application market is 

expanding every year [1]. As a result, mobile applications 

are becoming larger and more complex. The following 

problems exist for developers of increasingly complex 

mobile applications. 

• Difficult to understand the overall structure of the 

application 

• Difficult to keep track of where changes to the 

source code may have an impact 

To solve the above problems through software 

visualization, we have proposed SwiftDiagram. 

SwiftDiagram is a diagram that visualizes the static 

structure and impact scope of source code written in Swift, 

a programming language used to develop iOS 

applications. However, manually drawing a 

SwiftDiagram takes time and effort. Therefore, this paper 

implements RAGESS (Real-time Automatic Generation 

of SwiftDiagram System) to support the development of 

iOS applications in Swift. RAGESS is a tool that 

performs a static analysis of the Swift source code and 

automatically draws the corresponding SwiftDiagram 

when it detects that the target application builds 

successfully. 

2. SwiftDiagram 

SwiftDiagram is a diagram that targets source code 

written in the Swift programming language and supports 

the design and maintenance of iOS applications by 

visualizing the following: 

• Static structure of type 

• Affected scope when making changes to the type 

In addition, SwiftDiagram is composed of the following 

four types of parts and one type of arrow. The appearance 

of each part and arrow is shown in Fig. 1. 

• Header Part 

Shows a type identifier, such as type categories and 

name 

• Details Part 

Shows type components such as properties, 

methods, protocol conformance, and so on 

• Extension Part 

Shows a type extension 

• Nest Part 

Shows a type that is declared nested inside another 

type 

• Affected scope (arrow) 

Shows that changes made to the type at the root of 

the arrow may affect the component of the type 

pointed to by the arrow tip 

252



Haruki Onaga, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki  

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

3. RAGESS 

We implement RAGESS as a macOS application in Swift. 

After launching RAGESS, the user can use RAGESS 

functions by selecting the path to the project and its build 

file for which the user wants to draw SwiftDiagram. This 

chapter describes the overview and functions of 

RAGESS. 

3.1. Overview of RAGESS 

Fig. 2 shows the overview of RAGESS implemented in 

this paper. RAGESS consists of two areas, two slide bars, 

and three buttons as shown below. 

• Area displaying SwiftDiagram 

• Area displaying path and last modified date and 

time 

• Slide bar to adjust the magnification rate in 

SwiftDiagram 

• Slide bar to adjust arrows opacity 

• Button to display all arrows 

• Button to select a project directory 

• Button to select a build file 

3.2. Functions of RAGESS 

RAGESS has the following two functions. 

• Automatic real-time drawing of SwiftDiagram 

corresponding the latest source code 

• Narrowing down  the affected scope 

RAGESS monitors the build file of the target project. 

RAGESS statically analyzes the project's Swift source 

code every time it detects a change in the build file and 

automatically draws the corresponding SwiftDiagram. 

This saves the user from the trouble of updating the 

SwiftDiagram and means that the source code 

represented by the SwiftDiagram doesn’t contain any 

syntax errors. Static analysis of Swift source code is 

Fig. 1 Component parts of SwiftDiagram 

Fig. 2 Overview of RAGESS 

 

253



Prototype of RAGESS Which 

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

performed by using SwiftSyntax [2], which is open 

source by Apple. The user can scale the drawn 

SwiftDiagram by operating the slide bar. 

 

Representing the overall structure of a project in 

SwiftDiagram could complicate the arrows representing 

the affected scope and make it difficult for the user to 

understand the structure. When the user selects a header 

part, RAGESS narrows down the display to only those 

arrows that represent the affected scope of the changes 

made to the type. The user can also operate the slide bar 

to adjust the opacity of the arrows representing the 

affected scope. The button to display all arrows, returns 

the state of the narrowed down affected scope and the 

opacity of the arrows to their initial state, and displays all 

the arrows that represent the affected scope for the entire 

project. 

4. Application Example 

By using an application example, we verify that the 

RAGESS functionality works correctly for Swift source 

code that defines multiple types. Fig. 3 shows the 

correspondence between the SwiftDiagram drawn by 

RAGESS and the Swift source code in the example. Here, 

Fig. 2 shows a screen shot of RAGESS monitoring the 

build file of the project containing the Swift source code 

in the example, and when the build is successful. 

 

By looking at the StructA of the SwiftDiagram and the 

Swift source code in Fig. 3, the structure name and 

properties of the structure in the SwiftDiagram 

correspond to the structure name and properties of the 

structure in the Swift source code, respectively. Similarly, 

looking at StructC, the structure name, properties,  and 

dependencies by protocol conformance in the 

SwiftDiagram correspond to the structure name, 

properties, and dependencies by protocol conformance in 

the Swift source code, respectively. 

 

Also, ProtocolA, SuperClass, SubClass, and StructB in 

the SwiftDiagram extend arrows toward components of 

the type that may be affected by changes made to the type. 

 

Hence, it is clear that RAGESS can statically analyze 

Swift source code and draw the corresponding 

SwiftDiagram. 

5. Related work 

Emerge [3] is a tool for visualizing Swift source code. It 

is a browser-based tool that visualizes codebase and 

dependencies for multiple programming languages like 

Swift, Kotlin, and TypeScript. Because it visualizes the 

source code in a graph structure composed of nodes and 

edges, the user can explore and analyze it visually. 

 

Emerge analyzes source files under the source directory 

that are written in a language set by the user and generates 

files for displaying graphs in a Web browser. The user 

can load the file with a Web browser to analyze the 

dependencies. However, Emerge cannot reflect changes 

made to the target source code after analysis in the graph 

displayed in the Web browser. Also, because it takes 

types and files as nodes, the user cannot analyze the 

dependencies of the type components. On the other hand, 

RAGESS automatically draws SwiftDiagram every time 

the target application builds successfully. In addition, 

because arrows representing the dependencies are 

connected to type components such as properties and 

methods, the user can understand the dependencies in 

more detail. 

 

Fig. 3 Correspondence between SwiftDiagram and Swift source code in the sample project 

 

254



Haruki Onaga, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki  

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

And another tool for visualizing Swift source code is 

Swiftcity [4], [5]. Swiftcity adapts the city metaphor, 

which has been studied for Java, C++, and other 

languages, to unique type extensions, structures, and 

more of Swift to map and visualize source code into cities 

and buildings. The height of the building represents the 

number of lines of code (LOC) of the type, while the 

width and depth of the building represent the number of 

methods of the type. The user can use Swiftcity by 

uploading a project file to the user’s Web browser. 

 

 Swiftcity is useful for getting an overview of the 

application. For example, yellow buildings represent type 

extension, so if a city has many yellow buildings, it 

means that type extension are frequently used in its 

source code. The variety of building colors also means 

the use of all the standard features provided by Swift. 

However, Swiftcity visualizes type categories and the 

number of methods, but doesn't visualize elements such 

as properties and enumerated type cases, nor the 

dependencies such as function calls and protocol 

conformance. Therefore, use of Swiftcity is limited to 

understanding and analyzing an overview of the 

application in the maintenance process. On the other hand, 

RAGESS can visualize the size of a type by the height of 

the SwiftDiagram that combines each part and also 

components and dependencies  of the type. 

 

Therefore, RAGESS provides a more detailed 

visualization of the structure of applications than the 

other two tools that visualize Swift source code. In 

addition, it updates the SwiftDiagram in real-time every 

time the application builds successfully, thus reducing the 

time the user needs to modify the deliverables. 

6. Conclusion 

In this paper, we have implemented RAGESS, a tool 

statically analyzes the project's Swift source code every 

time it detects a change in the build file and automatically 

draws the corresponding SwiftDiagram, in order to 

support the development of iOS applications in the Swift 

programming language. 

 

We have applied RAGESS to Swift source code and 

confirmed that it can draw the corresponding 

SwiftDiagram. We also have confirmed that RAGESS 

can visualize the structure of the application in more 

detail and in real-time compared to other tools that 

visualize Swift source code. 

 

Consequently, RAGESS is expected to support the 

development of iOS applications in the Swift 

programming language. 

 

Future works are as follows: 

• Evaluation of usefulness by subject 

experimentation 

RAGESS cannot coexist with the current Swift and 

SwiftSyntax versions and is not buildable. 

Therefore, in this paper, we couldn’t evaluate the 

usefulness of RAGESS through experimentation in 

which subjects actually use RAGESS. We need to 

implement RAGESS to adapt it to current Swift and 

SwiftSyntax versions and conduct subject 

experimentation to confirm its usefulness. 

 

• Implementation of SwiftDiagram editing 

function 

We enable SwiftDiagram to edit in the area 

displaying SwiftDiagrams of RAGESS and reflect 

the edits in the source code. This function could 

assist the user in designing new developments or 

adding new function. We need to implement it 

because we believe it feature will further increase 

the usefulness of SwiftDiagram and RAGESS. 

 

• Implementation of search function 

In the current RAGESS, the user must visually 

search for the target type in the area displaying 

SwiftDiagram to understand the structure of the 

application. We believe that implementing the 

function to search by type name or component will 

further reduce the user's time and effort. 

 

• Extension of supported syntax 

RAGESS does not support type inference and can 

only extract properties whose types are explicitly 

indicated by type annotations. Since type inference 

is used in much Swift source code, we believe that 

supporting type inference would further increase 

the usefulness of RAGESS. And even if there are 

more nested types within nested declared types, 

RAGESS cannot extract that information. It is also 

not yet compatible with Swift Macros released with 

Swift 5.9. We plan to make RAGESS compatible 

with them. 

References 

1. Ministry of Internal Affairs and Communications, 

Japan, Information and Communications in Japan 

WHITE PAPER 2022, 

https://www.soumu.go.jp/johotsusintokei/whitepaper

/eng/WP2022/2022-index.html 

2. GitHub, swift-syntax, https://github.com/apple/swift-

syntax (Accessed 2023-12-14) 

3. GitHub, emerge, https://github.com/glato/emerge 

(Accessed 2023-12-14) 

4. Rafael Nunes, Marcel Rebouc ̧as, Francisco Soares-

Neto, Fernando Castor, Poster: Visualizing Swift 

Projects as Cities, IEEE/ACM 39th International 

Conference on Software Engineering Companion, pp. 

368-370, 2017. 

5. Swiftcity, https://swiftcity.github.io/swiftcity-app/ 

(Accessed 2023-12-14) 

  

255



Prototype of RAGESS Which 

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

 

Authors Introduction 
 

 

Dr. Tetsuro Katayama 

He received a Ph.D. degree in engineering 

from Kyushu University, Fukuoka, Japan, 

in 1996. From 1996 to 2000, he has been a 

Research Associate at the Graduate School 

of Information Science, Nara Institute of 

Science and Technology, Japan. Since 2000 

he has been an Associate Professor at the 

Faculty of Engineering, Miyazaki University, Japan. He is 

currently a Professor with the Faculty of Engineering, 

University of Miyazaki, Japan.  His research interests 

include software testing and quality. He is a member of the 

IPSJ, IEICE, and JSSST. 

 

Dr. Yoshihiro Kita  

Yoshihiro Kita received a Ph.D. degree in 

systems engineering from the University of 

Miyazaki, Japan, in 2011.  He is currently 

an Associate Professor with the Faculty of 

Information Systems, University of 

Nagasaki, Japan.  His research interests 

include software testing and biometrics authentication. 

 

Dr. Hisaaki Yamaba 

He received the B.S. and M.S. degrees in 

chemical engineering from the Tokyo 

Institute of Technology, Japan, in 1988 and 

1990, respectively, and the Ph D. degree in 

systems engineering from the University of 

Miyazaki, Japan in 2011. He is currently an 

Assistant Professor with the Faculty of 

Engineering, University of Miyazaki, Japan. His research 

interests include network security and user authentication. 

He is a member of SICE and SCEJ. 

1.  

Dr. Kentaro Aburada 

He received the B.S., M.S, and Ph.D. 

degrees in computer science and system 

engineering from the University of 

Miyazaki, Japan, in 2003, 2005, and 2009, 

respectively.  He is currently an Associate 

Professor with the Faculty of Engineering, 

University of Miyazaki, Japan. His research interests include 

computer networks and security. He is a member of IPSJ and 

IEICE. 

 

 

 

 

 

 

Naonobu Okazaki 

He received his B.S, M.S., and Ph.D. degrees 

in electrical and communication engineering 

from Tohoku University, Japan, in 1986, 

1988 and 1992, respectively. He joined the 

Information Technology Research and 

Development Center, Mitsubishi Electric 

Corporation in 1991. He is currently a 

Professor with the Faculty of Engineering, University of 

Miyazaki since 2002. His research interests include mobile 

network and network security. He is a member of IPSJ, 

IEICE and IEEE. 

 

 

 

Mr. Haruki Onaga 

Haruki Onaga received the Bachelor's 

degree in engineering  (computer science 

and systems engineering) from the 

University of Miyazaki, Japan in 2023. He 

is currently a Master's student in Graduate 

School of Engineering at the University of 

Miyazaki, Japan.  His research interests 

include software development support through software 

visualization. 

256

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

