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Abstract 

Large-scale analyses, using numerical models with over 10 trillion elements, are required for the analysis of a large 

space such as a concert hall with higher-frequency bands. Large spaces are often limited to low-frequency analysis. 

In this study, the number of elements is reduced by wave acoustic analysis using higher-order elements. Based on the 

results using higher-order elements, it is shown that it is possible to analyze a real environment model such as a live 

music club and a concert hall. 

Keywords: large-scale simulation, acoustical sound field, higher-order element 

1. Introduction 

Estimation of the sound field is important for improving 

the quality of acoustic spaces such as concert halls and 

live music clubs [1]. Scale model experiments and the 

computer simulations are used for estimation of the sound 

field. Scale model experiments are used in many fields 

[2], however, creating models requires a lot of time and 

is expensive. On the other hand, computer simulation 

creates a model and sound in a virtual space. Therefore, 

in the computer simulation, it is easy to change the 

conditions of the analysis as well as to change materials 

and shapes. However, a large-scale analysis, using a nu-

merical model with over 10 trillion elements, is required 

for the analysis of a large space with high frequency. n a 

large-scale finite element steady-state acoustic analysis, 

the iterative domain decom-position method [3] is 

proposed and applied as a parallelization technique. It is 

shown that the large-scale analysis becomes possible by 

the iterative domain decomposition method [4]. In this 

study, higher-order elements are introduced into a 

parallel finite ele-ment steady-state acoustic analysis 

method and greatly reduce the number of elements. 

Higher-order elements are not actively used because the 

matrix expands. In particular, there are some examples of 

higher-order elements, e.g., higher than the 3rd order ele-

ment [5], however, there are few examples of acoustic 

analysis. As far as we know, there is no example showing 

the superiority of reducing the number of necessary 

elements by applying higher-order elements, especially 

in large-scale acoustic calculations using the domain 

decomposition method. 

2. Finite element 

2.1. Higher-order elements 

To reduce the number of elements, 2nd and 3rd order 

elements are introduced. With higher-order elements, the 

number of nodes increases because the nodes are placed 

on the sides and faces of the element. Fig. 1 shows the 

nodal arrangement of the tetrahedras with 1st, 2nd, and 

3rd order elements. Table 1 shows the shape function of 

each element [6]. 

 

(a) 1st order elemenet      (b) 2nd order           (c) 3rd order 

Fig. 1.  Nodal arrangement of each element 

Table 1.  Shape function 

1st order 

elm. 
𝑁𝑖 = 𝐿𝑖 i=0,1,…,3 

2nd order 

elm. 

𝑁𝑖 = 𝐿𝑖(2𝐿𝑖 − 1) 
i=0, 1, …, 

3 

𝑁𝑖 = 4𝐿𝑗𝐿𝑘 
i=4,…,9 

j, k=0,…,3 

3rd order 

elm. 

𝑁𝑖 =
1

2
(3𝐿𝑖 − 1)(3𝐿𝑖 − 2)𝐿𝑖 i=0,…,3 

𝑁𝑖 =
9

2
(3𝐿𝑗 − 1)𝐿𝑗𝐿𝑘 

i=4,…,15 

j, k=0,…,3 

𝑁𝑖 = 27𝐿𝑗𝐿𝑘𝐿𝑙 i=16,…,19 

𝐿 : Volume coordinate variable 

N : Shape function 

i : Number of nodes 

670



Amane Takei, Akihiro Kudo, Makoto Sakamoto 

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

2.2. Helmholtz equation 

In the 3-dimensional sound field, the wave equation for 

velocity potential is expressed by the following equation: 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2
−

1

𝑐2

𝜕2𝜙

𝜕𝑡2
= 𝑞                                   (1) 

where 𝜙 is the velocity potential, 𝑐 is the speed of sound, 

and 𝑞 is the distribution function.  

To consider the steady-state, the velocity potential is 

expressed by Eq. (2). Using Eq. (1) and Eq. (2), the 

Helmholtz equation is obtained: 

𝜙 = 𝛷𝑒−𝑗𝜔𝑡                                                                         (2)                                                                                                                                                   

𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
+

𝜕2𝛷

𝜕𝑧2
+

𝜔2

𝑐2
𝛷 = 𝑞                                     (3) 

where 𝜔 is the angular frequency.  

 The velocity potential of Eq. (3) and calculate the 

sound pressure using the following equation are obtained: 

𝑝 = 𝑗𝜔𝜌𝛷                                                                   (4) 

where 𝑗 is the imaginary number, and 𝜌 is the medium 

density. 

 

2.3. Finite element formulation 

To derive a weak form, the Galerkin method is applied 

to Eq. (3). By applying the finite element approximation 

and discretization, the following equation is obtained: 

 

−𝑘2[𝑀]{𝛷} + 𝑗𝜔𝜌[𝐶]{𝛷} + [𝐾]{𝛷} = {𝑞}             (5) 

 

where [・] is a matrix, {・} is a vector. In Eq. (5), the 

matrices [M], [C] and [K] can be calculated using Eq. 

(6.1,2,3): 

 

[𝑀]𝑒 = ∭ {𝑁}{𝑁}𝑇𝑑𝛺𝑒 
𝛺𝑒

                                      (6.1) 

[𝐾]𝑒 = ∭ ∇{𝑁}∇{𝑁}𝑇𝑑𝛺𝑒
Ω𝑒

                                      (6.2) 

[𝐶]𝑒 = −
1

𝑍𝑛

∬ {𝑁}{𝑁}𝑇𝑑𝛤𝑒
𝛤𝑒

                                     (6.3) 

where N is the shape function, [𝑀]𝑒  and [𝐾]𝑒  are the 

volume integrals, and [𝐶]𝑒  is a surface integral to the 

sound-absorbing boundary surface. 𝑍𝑛  is a specific 

acoustic impedance.  

2.4. Calculaion of element matrix 

Let us consider the calculation {𝑁}{𝑁}𝑇in Eqs. (6.1) and 

(6.3). This calculation uses an integration formula of the 

3 or 2-dimensional finite element method. These 

integration formulas are shown in the following 

equations [7].  

 

∭ 𝐿1
𝑘𝐿2

𝑙 𝐿3
𝑚𝐿4

𝑛𝑑𝑥𝑑𝑦𝑑𝑧
𝛺𝑒

= 6𝑉𝑒

𝑘! 𝑙! 𝑚! 𝑛!

(𝑘 + 𝑙 + 𝑚 + 𝑛 + 3)!
           (7) 

 

∬ 𝐿1
𝑘𝐿2

𝑙 𝐿3
𝑚𝑑𝑥𝑑𝑦

Γ𝑒

= 2𝐴𝑒

𝑘! 𝑙! 𝑚!

(𝑘 + 𝑙 + 𝑚 + 2)!
                 (8) 

 

On the other hand, the calculation of ∇{𝑁}∇{𝑁}𝑇  in 

Eq. (6.2) shown in the following equation. 

 
𝜕𝑓

𝜕𝑥
=

1

6𝑉𝑒

(𝑏1

𝜕𝑓

𝜕𝐿1

+ 𝑏2

𝜕𝑓

𝜕𝐿2

+ 𝑏3

𝜕𝑓

𝜕𝐿3

+ 𝑏4

𝜕𝑓

𝜕𝐿4

) 

𝜕𝑓

𝜕𝑦
=

1

6𝑉𝑒

(𝑐1

𝜕𝑓

𝜕𝐿1

+ 𝑐2

𝜕𝑓

𝜕𝐿2

+ 𝑐3

𝜕𝑓

𝜕𝐿3

+ 𝑐4

𝜕𝑓

𝜕𝐿4

)          (9) 

𝜕𝑓

𝜕𝑧
=

1

6𝑉𝑒

(𝑑1

𝜕𝑓

𝜕𝐿1

+ 𝑑2

𝜕𝑓

𝜕𝐿2

+ 𝑑3

𝜕𝑓

𝜕𝐿3

+ 𝑑4

𝜕𝑓

𝜕𝐿4

) 

We convert the finite element equations of (5) to a 

matrix form as follows: 

𝐾𝑢 = 𝑓.                                                                             (10) 

2.5. Hierarchical domain decomposition method 

The original analysis domain is first divided into parts, 

which are further decomposed into smaller domains 

called subdomains. This is called the hierarchical domain 

decomposition method (HDDM) [8], [9].  

3.  Numerical experiment 

3.1. Verification by benchmark problem 

Fig.2 shows that test model for simulation. The model is 

AHLV100 that is known as a reference model in 

code_Aster. This is also described in the 

ADVENTURE_sound manual as a sample. This 

simulation was done to confirm the use of transient 

analysis in ADVENTURE_Sound. To evaluate the 

accuracy of the acoustic analysis code, an acoustic 

benchmark problem is used. The analysis uses the test 

model AHLV100 of Code_Aster [10], which is known as 

a representative benchmark problem among acoustic 

problems (Fig. 4).  

This model is an acoustic tube that has a length of 1 

[m], a height of 0.1 [m] and a width of 0.2 [m]. It has a 

vibration boundary at the left end and a sound absorption 

boundary at the right end. The other faces are given rigid 

boundaries. The specific acoustic impedance Zn=445.9 

[kg/m3 ∙ s] is given as a sound absorption boundary 

condition. 

The accuracy is calculated from the average error of 

four points on the sound absorption boundary. The 

formula for calculating the theoretical solution is as 

follows: 

𝑝(𝑥, 𝑦, 𝑧) = 𝜌𝑐𝑉𝑛𝑒𝑥𝑝(−𝑖𝑘𝑥)                                        (11) 

where 𝜌 is the medium, c is the speed of sound, and 𝑉𝑛 is 

the particle velocity. 
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3.2. Performance evaluation 

The performance of higher-order elements is 

evaluated based on the number of elements, 

accuracy rate, and memory usage. The performance 

evaluation conditions are: 4.0 [kHz] for frequency, 

air for medium, and 343 [m/s] for sound velocity. 

The analysis uses a PC cluster composed of 5 PCs 

(40 cores) equipped with a multicore CPU (Intel 

Core i7-9700K, 3.6GHz 8core, 32GB of memory). 

 Numerical results for the error rate, plotted 

against the number of elements, are shown in Fig. 3. 

Results for the memory, plotted against the number 

of elements, are shown in Fig. 4. 

 
Fig. 3.  Error rate plotted against the number of elements 

 

 
Fig. 4.  Memory usage plotted against the number of 

elements 

 

The accuracy increases dramatically when a higher-

order element is applied. In particular, the accuracy 

changes more rapidly as the order increases.  

3.3. Analyses using real environment models 

To confirm the effectiveness of higher-order elements, 

the sound field of the real environment model is analyzed. 

The model used for analysis is concert hall model that is 

shown in Fig. 5. 

 

      
(a)  Concert hall 3D CAD model   

 
          (b)  Concert hall model dimensions 

Fig. 5. Concert hall model 

 

The concert hall model is constructed based on real 

spaces [11].  

 The concert hall model is 11.5 [m] wide, 7 [m] high, 

and 23.5 [m] deep. The sound source is set as a pair of 

speakers at either end of the stage. Oakwood flooring, a 

wooden stage, and a glass wool wall at the back of the 

hall are used as sound-absorbing boundary conditions. 

The sound field is analyzed by applying a 400 [Hz] sound 

to these models.  

 The results of these analyses are shown in Table 2. 

The visualization results are shown in Fig. 6, and the 

convergence histories of the iterative method (COCG) are 

shown in Fig. 7. The concert hall analysis using the 1st 

and the 2nd order elements are excluded from the 

evaluation because the number of elements exceeds 100 

million. The data I/O library currently applied is 32 bit. 

This library cannot use data sizes that exceed 100 million 

elements. A 64-bit I/O library is currently under 

development. 
 

Table 2.  Numerical results of the concert hall model 
 

Element 

type 

Number of 

elements 

Number of 

nodes 

Elapsed 

Time 

[sec] 

Memory 

requirement 

[MB/core] 

1st order 823,285,162    

2nd order 102,910,645    

3rd order 878,624 4,051,235 53.97 391.97 

 

Vibration boundary 
Rigid boundary 

Absorption boundary 

Fig. 2. Acoustic benchmark problem AHLV100 
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(a)  Visualization results (X-Y) 

 
 (b)  Visualization results (X-Z) 

Fig. 6.  Concert hall model 

 

Fig. 7.  Converegence history of the COCG 

4. Conclusion 

This paper described a large-scale acoustic analysis 

method using a domain decomposition method and the 

introduction of higher-order elements. The performance 

of proposed method was evaluated with higher-order 

elements using of AHLV100. The error rate, number of 

elements, and memory usage were the considered as 

evaluation criterions. It was shown that the calculation 

efficiency improved in higher-order elements. In 

particular, in the 3rd order element, the calculation 

efficiency was vastly improved. Furthermore, the 

accuracy of higher-order elements was verified. The 2nd 

order element and the 3rd order element were compared 

in terms of the number of elements and calculation time. 

Additionally, real environment model was analyzed, 

namely, a small concert hall model. It was shown that the 

real environment models could be successfully analyzed 

by using higher-order elements.  
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