
 

©The 2024 International Conference on Artificial Life and Robotics (ICAROB2024), J:COM HorutoHall, Oita, Japan, 2024 

An Overview of Kinect Based Gesture Recognition Methods    

Alexander Alexeev 

Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia 

Tatyana Tsoy 

Laboratory of Intelligent Robotics Systems (LIRS), Institute of Information Technology and Intelligent Systems, Kazan 

Federal University, Kazan, Russia 

Edgar A. Martínez-García 

Robotics Laboratory, Department of Industrial Engineering and Manufacturing, The Autonomous University of Ciudad 

Juarez, Chihuahua, Mexico 

Evgeni Magid 

Laboratory of Intelligent Robotics Systems (LIRS), Institute of Information Technology and Intelligent Systems, Kazan 

Federal University, Kazan, Russia 

HSE University, Moscow, Russia 

E-mail: san73rus@gmail.com, tt@it.kfu.ru, edmartin@uacj.mx, magid@it.kfu.ru 

 

Abstract 

Visual sensors play an important role in a broad variety of robotic systems applications. Even though Kinect 

technology appeared over 10 years ago, Kinect sensors are still actively employed by researchers around the world. 

This paper presents an overview of Kinect and Kinect 2 sensors’ applications in a human gesture based control. We 

analyzed existing research papers to estimate a popularity of particular feature extraction and gesture recognition 

methods, recommendations on a distance between an object of interest and a sensor, reported accuracy and latency of 

the sensor. Our analysis is supposed to facilitate a selection of a suitable combination of methods for a particular 

application of Kinect sensor in gesture recognition while considering its performance. 
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1. Introduction 

 Robotics has achieved a significant progress, enabling 

robots to autonomously plan routes [1] and interact with 

humans in medicine [2], education [3], and rescue 

operations [4]. Controlling robots with a voice and 

gestures is the most natural way of interaction [5] due to 

daily habits of using these methods by humans.  Control 

using gestures can be implemented with vision sensors 

[6], electromyography methods (that track human muscle 

contractions [7]), employing a touch screen, an 

accelerometer or other sensors [8]. This paper overviews 

gesture control implementations in robotics using Kinect 

sensor. Kinect is originally a Microsoft motion controller 

for gaming that uses computer vision methods for a 

gesture based control. Later Microsoft enabled a custom 

application development with Software Development Kit 

for Windows [9]. This study summarize information 

about Microsoft Kinect use in robotics, compares 

accuracy of different gesture recognition methods and 

emphasizes a reported latency of Kinect in various tasks. 

2. Kinect in Robotics 

Kinect sensor (Fig. 1a) is a device introduced by 

Microsoft in 2010 for XBOX 360 gaming console control. 

A combination of an infrared sensor and RBG-D camera 

makes Kinect suitable for human body tracking purposes. 

Software Development Kit [10] allows developing a 

custom software for a variety of tasks including gesture 

based robot control. The introduced by Microsoft in 2013 

Kinect v2 was (Fig. 1b) a second generation of Kinect 

device that also combines RGB-D and infrared sensors. 

Similar to its predecessor, Kinect v2 is intended for a 

gesture-based control. However, due to technical 

improvements such as adding a wide angle time of flight 

(ToF) camera [11] and upscaling a color camera 

resolution to 1080p [12], it exhibits a better performance 

compared to the first generation, which is demonstrated 

in Section 4. 
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Fig. 1. Microsoft Kinect first generation and Kinect v2. 

Kinect and Kinect v2 capture color and depth data of a 

scene and are broadly used in computer vision for object 

recognition including gesture recognition. The distinctive 

feature of Kinect family is its versatility compared to 

counterpart sensors. Leap Motion Controller is also used 

in robotics for gesture-based robot control [13], [14]. Yet, 

this device is designed to recognize only hand 

movements, whereas Kinect does not have such 

limitations and can be employed for a full-body gesture 

recognition [15] and a face tracking [16]. In addition, 

Kinect v2 contains an embedded microphone that enables 

a voice control [17], which can augment a gesture-based 

control. Leap Motion Controllers could be used in pairs, 

e.g., to recognize each hand separately [18], which may 

increase the system's load. Similarly, Kinect sensors can 

form complicated systems for tracking and motion 

capture system purposes [19], [20]. However, in some 

cases Kinect sensor may not be a right solution, e.g., 

authors in [21] complained that Kinect is not compatible 

with Linux systems as Kinect’s Software Development 

Kit has only Windows OS support. To solve this issue, 

the researchers employed Asus Xtion Pro Live with an 

RGB-D camera similar to Kinect.  

In robotics, Kinect could be used to control different 

types of real robots. In [17] authors presented a Kinect-

based industrial robot control and demonstrated that 

Kinect could be successfully integrated into simulators. 

In [22] Kinect was applied for a remote control of a 

mechanical arm that replicates operator-defined gestures. 

A gesture-based control using Kinect could also be 

implemented in mobile robotics, where Kinect serves as 

a robot control panel [23]. 

3. Gesture Recognition Methods  

Choosing a gesture recognition method for Kinect 

based control is important, as it directly affects an overall 

system performance. If a gesture recognition method is 

not accurate enough, not suitable for a particular task or 

a recognition system demonstrates significant delays, a 

different method of control should be considered. In this 

section, we summarize information about methods of 

Kinect based control and emphasize their accuracy. 

Table 1 presents an analysis of studies that used various 

combinations of feature extraction and gesture 

recognition methods. The first column of the table 

describes a particular task; the second column Dist 

specifies a recommended optimal distance between an 

object of interest (gesture producer) and a sensor in 

meters; the third and the forth – a feature extraction FEM 

and a gesture recognition methods GRM, respectively. 

The fifth column Acc shows an accuracy of each 

approach in percents (as reported by its authors); the sixth 

Skeleton emphasizes if an approach employes a skeleton 

extraction; the last one Rf refers to a corresponding paper. 

N/A in the table denotes that a paper does not contain 

corresponding data. 

As Table 1 shows, a combination of the Histogram of 

Oriented Gradients (HOG) for feature extraction and 

Support Vector Machine (SVM) for gesture recognition 

([24], [33]) is a popular approach among researchers. The 

same combination was used at an earlier stage of [26] 

research, however, a deep learning AlexNet model 

eventually was chosen due to a better performance. In 

[31] the authors emphasized an influence of a distance at 

which gestures were recognized by Kinect on a 

recognition accuracy. The highest accuracy of 87% was 

achieved at a distance of 3 meters from the Kinect, while 

the lowest accuracy of gesture recognition of 25% was 

obtained at a distance of 5 meters from the sensor. The 

importance of a classifier selection when controlling a 

robot with user-defined gestures was confirmed in [23], 

where the SURF and FLANN methods were employed, 

to extract arbitrary points from an image and to recognize 

gestures. During the experiments, it was discovered that 

the FLANN library failed to achieve required results in 

recognizing gestures as it could not match corresponding 

features in a variety of  gestures. 

Majority of studies in Table 1 used a method of a 

skeleton construction, where a skeleton consists of joints 

of a human body or hands only. This approach allows a 

more accurate extraction of special points, which are 

further required for a gesture recognition. An alternative 

approach built a 3D model of a hand [34]; yet the authors 

did not provide accuracy indicators for the gesture 

recognition, and thus a usability of the method for a real 

gesture recognition system is questionable. 

4. Kinect Latency 

Latency has a significant importance when operating 

technical devices. Latency can be caused by hardware  
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Table 1.  Gesture Recognition Methods 

Task Dist, m FEM GRM Acc, % Skeleton Rf 

Static hand gesture 

recognition 

N/A Histogram of 

Oriented Gradients 

Support Vector 

Machine 

98.3 No [24] 

Hand gesture recognition 1.2–3.5 Skeleton Extraction Artificial Neural 

Network 

97.8 Yes [25] 

Touchless visualization 

of 3D medical images 

2.5-3.5 Histogram of 

Oriented Gradients 

AlexNet (CNN) 96.5 No [26] 

Hand gesture recognition N/A MediaPipe Palm 

Detector 

MediaPipe 

Gesture 

Recognition 

95.7 Yes [27] 

Sign language 

recognition for Arabic 

speakers 

N/A Used (not specified 

which one) 
RandomForest 

Classifier + Ada-

Boosting 

93.7 Yes [28] 

Dynamic hand gesture 

recognition 

N/A N/A Dynamic Time 

Warping 

92 Kinect 

embedded 

[29] 

Full body gesture 

recognition 

N/A CNN Fast Dynamic 

Time Warping + 

CNN 

90.8 Yes [30] 

Smart home control 3 m Self-developed Self-developed 87 Yes [31] 

Sign language 

recognition 

N/A Histogram of 

Oriented Gradients 

Dynamic Time 

Warping 

86 Yes [32] 

Hand gesture recognition 2.5-3 m Histogram of 

Oriented Gradients 

Dynamic Time 

Warping 

76.7 Yes [33] 

and software factors. Moreover, a task-dependent 

software delay sums up with a hardware delay, which 

leads to a decrease in device performance. This section 

discusses a latency between a user input and an expected 

system output, which differ for a particular task. 

Table 2.  Latency Measurements of Kinect  

 
Table 2 presents ab information about latency 

measurements of both generations of Kinect devices 

employed in various tasks.  Note that reference papers of 

Table 1 and Table 2 are different since Table 1 papers did 

not specify a latency as they considered a different aspect 

of Kinect usage. 

In [41] authors emphasized a 20 ms hardware latency 

as a minimum latency level of the device itself, which 

cannot be reduced. While official manufacture stated 

latency data for the first generation of Kinect is not 

available, the study [36] reports the latency value of 100 

ms. Based on the surveyed in Table 2 papers we 

concluded that the average latency for the first generation 

Kinect is 267 ms, while the average latency for Kinect v2 

is 123 ms. However, even though the Kinect v2's average 

latency significantly improved over the first generation, 

its effectiveness still depends on a specific task in which 

it is used and could achieve up to 200 ms. 

5. Conclusions 

This paper presents an overview of Microsoft Kinect 

sensor applications for gesture based control in robotics. 

Kinect first generation and Kinect v2 related research 

papers were analyzed in terms of range and accuracy in a 

number of typical tasks that require a sensor with RBG-

D capabilities. Based on the survey we concluded that the 

average overall latency of the first generation Kinect is 

267 ms, while the average latency for Kinect v2 is 123 

ms. However, even though the Kinect v2's average 

latency has improved over the first generation, its 

effectiveness naturally depends on a specific task and 

could achieve up to 200 ms. 

 

Task Latency, ms Ref 

Kinect 

Skeleton detection 106-500 [35] 

Human fall incident detection 300 [36] 

Contactless hand tracking for 

surgical robot 

89-576 [37] 

Skeleton position estimation 100 [38] 

Skeleton detection 200-400 [39] 

Kinect v2 

Human gait analysis  29-127 [40] 

Human gait analysis 200 [41] 

Skeleton detection 66-100 [42] 

IRB4400 industrial robot 

control  

20 (only a 

hardware latency) 

[43] 

Rat behavior tracking 80-126  [44] 

3D content capture 65-67  [45] 
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