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Abstract 

Two standard approaches for a robot path planning include a global and a local navigation. The later does not require 

to store an environment model in a robot memory. This paper presents implementations of two local navigation 

algorithms, Alg1 and Alg2, with a robot having no prior information about an environment and obstacles. It calculates 

a path in a real time, continuously changing its states depending on correspondent conditions. The algorithms were 

implemented for an existing differential drive robot Turtlebot3 Burger using Robot Operation System (ROS). Virtual 

experiments were performed in the Gazebo simulator employing a simple 3D environment with only convex obstacles 

and a small 3D maze. 
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1. Introduction 

Mobile robots and autonomous navigation are 

gradually integrated in various aspects of human 

activities, from occasional operations in dangerous 

scenarios to daily social interactions. The former include 

firefighting services [1], [2], urban search and rescue 

operations [3], [4], and special military operations [5], 

while the later improve processes in education [6], [7], 

manufacturing [8], [9], medicine [10], [11], agriculture 

[12], [13], rehabilitation [14] and service tasks [15], [16]. 

These tasks require advanced sensory-based  autonomous 

navigation in various environments [17], [18]. 

Autonomous navigation allows a robot to decide on its 

motion and actions, based on onboard sensory data about 

its environmental and current location [19]. 

There are two types of path-planning: a global 

navigation and a local navigation [20]. In the global 

planning approach, a mobile robot has a well-defined 

map of an environment in which the robot can build its 

path. In more realistic settings, a robot deals with 

uncertain maps and relies on its sensors to plan a 

path [21]. which is called the local navigation. In the local 

planning approach a robot is being placed at a starting 

position and must reach a target or report if it cannot be 

reached while no other information is known to the robot 

in advance [22]. In this case, the robot uses local sensory 

data [20] to detect obstacles within its radius of vision 

[23], which allows the robot to encounter an obstacle only 

when it hits the obstacle in most algorithms [24]. 

Boundary-following and Ultimate Goal (BUG) family 

algorithms were designed to solve the local navigation 

problem without generating a full map of an environment 

[22]. Following a BUG family algorithm, a robot could 

operate in a broad variety of environments [25] and (by 

an algorithm design) attempts to construct a shortest path 

toward its destination [26]. BUG algorithms have two 

modes of motion: moving towards a target and following 

an obstacle boundary. A robot goes towards the target 

until it hits any obstacle. Then it starts to follow the 

boundary until a straight path towards the target becomes 

clear again [27]. A condition that defines if the path is 

clear differs depending on a particular algorithm. 
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In BUG model a robot is considered as a point object 

[22] in a 2D-map. In this paper a path-planning sensory-

based navigation was simulated in a 3D-environment 

with a real mobile robot model, which employs Alg1 [28] 

and Alg2 [29] algorithms. The algorithms were 

implemented using robot operating system (ROS) [30]  

and evaluated using Gazebo simulator [31]. 

2. Brief description of the algorithms 

Alg1 and Alg2 algorithms belong to BUG family. Two 

states of a robot under BUG strategy are: 1) go to the 

target; 2) follow the boundary. Most algorithms employ 

a line from start point to target, which is called M-line. 

The robot switches from state 1 to state 2 when it hits an 

obstacle at a point that is defined as a Hit-point (H-point). 

The switch from state 1 to state 2 occurs when the robot 

decides to abandon the current obstacle at a point that is 

defined as a Leave-point (L-point). Both H-point and L-

point are defined differently by particular algorithms.  

2.1. Alg1 algorithm 

Alg1 algorithm improves basic Bug2 algorithm [24] in 

a sense of excluding multiple traces of long segments of 

a path. It collects H-points (Hi) and L-points (Lj) of 

previous iterations and uses this information to generate 

shorter paths by changing a local direction to the opposite. 

The algorithm works as follows [32]: 

0) Initialize iteration i to 0, define M-line as line 

connecting start S and target T points. 

1) Increment i and follow M-line toward T until either: 

• T is reached. Stop. 

• An obstacle is hit. Define this point as Hi. Go to 

step 2. 

2) Keeping the obstacle on the right, follow the obstacle 

boundary. Do this until one of the following occurs: 

• T is reached. Stop. 

• A point y is found such that: 

- it is on M-line and 

- d(y, T) < d(x, T) for all x ever visited by the 

robot along M-line and 

- The robot can move towards T at y. 

Define this point as Li and go to step 1. 

• A previously defined point Hj or Lj is 

encountered such that j<i. Change the local 

direction one and return to Hi. When Hi is 

reached, follow the obstacle boundary keeping 

the wall on the left. This rule cannot be applied 

again until Li is defined. 

• The robot returns to Hi. T is unreachable. Stop. 

2.2. Alg2 algorithm 

Alg2 algorithm upgrades Alg1 algorithm by 

abandoning M-line concept. The leaving condition is that 

the robot became closer to T than before. The algorithm 

operates as follows [30]: 

0) Initialize iteration i to 0 and Q = d(S, T). 

1) Increment i and proceed in the direction of T whilst 

continuously updating Q to d(x, T) if Q < d(x, T), 

where x is a current position. Q should now represent 

the closest to T point where the robot has ever been. 

Repeat this until one of the following occurs: 

• T is reached. Stop. 

• An obstacle is hit. Define this point Hi. Go to 

step 2. 

2) Keeping the obstacle on the right, follow the obstacle 

boundary continuously updating Q to d(x, T) if Q < 

d(x, T). Do this until one of the following occurs: 

• T is reached. Stop. 

• A point y is found such that: 

- d(y, T) < Q and 

- The robot can move towards T at y. 

Define this point as Li and go to step 1. 

• A previously defined point Hj or Lj is 

encountered such that j<i. Change the local 

direction and return to Hi. When Hi is reached, 

follow the obstacle boundary keeping the wall 

on the left. This rule cannot be applied again 

until Li is defined. 

• The robot returns to Hi. T is unreachable. Stop. 

3. Implementation details 

Ubuntu operating system and ROS Noetic Ninjemys 

were used. Gazebo simulator was employed for 

debugging and verifying algorithms’ implementation 

with Turtlebot3 Burger robot model (Fig. 1) from an open 

source software kit [33].  

Alg1 and Alg2 were implemented in Python3 

programming language and arranged as a package with 

two files, containing Alg1 and Alg2 respectively. A main 

service uses services for going to a point and a wall 

following in a clockwise and counter clock-wise order. 

The following libraries and modules were used for all 

the services: 

• rospy – a pure Python client library for ROS; 

• geometry_msgs module used for generating and 

sending messages for setting robot’s position; 

• sensor_msgs module to register laser range 

finder’s  measurements; 

• gazebo_msgs module to define and set a robot’s 

current state; 

• tf module for angles’ operations; 

• nav_msgs module for odometry; 

• std_srv module for ros services. 
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Fig. 1. Turtlebot3 Burger in the Gazebo environment 

A main difficulty that was encountered while 

implementing the algorithms was a definition of suitable 

constants that allow comparing distance measurements. 

For example, one of the problems was to define a 

threshold ε>0 that could be employed to define two 

distinct robot positions. This way we define that if a 

Euclidean distance Dist between two points pk and pm is 

less than ε, it means that the two points coincide with each 

other:  

Dist(pk,pm)≤ ε  <=> pk = pm                                         (1) 

A value of ε was chosen empirically to fit all types of 

environments. 

Another problem relates to the construction of the robot 

that causes stuck because the robot sensor does not 

consider the robot’s wheels, which poke out from the 

mobile base. In some cases, the robot does not register an 

obstacle when its wheels already have hit a convex corner. 

A possible solution is an increase of a threshold δ that 

helps defining a H-point as: 

Dist(pk,pobs)≤ δ  => pobs = Hi                                         (2) 

where pobs is a point on a boundary of a currently hit 

obstacle, pk is a current position of the robot, Hi is a newly 

defined H-point. Yet, this may cause the algorithms’ 

failure since the robot may miss a H-point and thus skips 

a switch of its state into the boundary following mode. 

Finally, one more difficulty appeared only for Alg2 

algorithm at step 1 when it checks whether the robot 

became closer to T than before (Q < d(x, T)). While in a 

mathematical sense this comparison is performed 

constantly, in practice a particular small time step Δt 

between checking a new value of x should be selected. 

The value of Δt was found empirically so that it 

successfully works for both employed types of maps: 

separate convex obstacles and mazes. 

4. Validation 

To validate the implementation of Alg1 and Alg2 

algorithms 45 tests within two different types of 

environments were conducted. While there exist several 

popular tools for environment construction for Gazebo 

worlds, ranging from semiautonomous generators of 

single environments from 2D images [18],[34] to 

autonomous generators of multiple environments, 

including maze-like environments [35] and random step 

environment generators [36] using ergonomic graphical 

user interfaces, it was decided to construct two 

environments manually in order to ensure interesting 

cases for algorithms’ testing. The first constructed 

environment was bounded by an external non-traversable 

black wall with five green towers and contained separate 

convex obstacles in a form of nine identical columns. The 

second environment was a maze. 25 and 20 test cases 

within the convex environment and the maze were 

conducted, correspondingly. For each test cases four runs 

were conducted. In total, 90,5% of the tests were 

successful while seven tests in the convex environment 

and ten tests in the maze failed due to the problems that 

were stated in Section 3. Additional tests for the target 

reachability were performed successfully in both 

environment. Table 1 presents the system configuration. 

Table 1. System configuration 

Parameter Characteristics 

Operation System details Ubuntu 20.0.4 

Memory 8.00 GB 

Processor 

Intel(R) Core (TM) i7-

4510U CPU @ 2.00GHz 

2.60 GHz 

Fig. 2 presents a path constructed by Alg1 algorithm in 

the convex environment. Due to the environment’s 

simplicity, a path of Alg2 algorithm was almost identical. 

Fig. 3 and Fig. 4 demonstrate paths with the same S, T 

locations that were constructed in the maze environment 

by Alg1 and Alg2 respectively. In this particular case 

Alg2 outperformed Alg1; it is wrong to state that Alg2 

always outperforms Alg1 in every case as a result 

depends on the S, T and the environment selection. 

 
Fig. 2. A path of Alg1 in the convex environment is 

shown by white lines. The arrows depict the direction of 

motion, the red star marks the target.  
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Fig. 3. A path of Alg1 in the maze 

Fig. 4. A path of Alg2 in the maze 

5. Conclusions 

The paper presented the implementation of Alg1 and 

Alg2 algorithms in Python programming language for 

Turtlebot3 Burger robot model using ROS Noetic. The 

conducted tests successfully validated the implemented 

algorithms in the simple convex environment and in the 

maze. A number of difficulties that were encountered 

while implementing the algorithms are discussed.  
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