# Developing a Prototype Hand Gesture Recognition System in Interpreting American Sign Language

### **Kong Seh Chong**

Institute of Computer Science and Digital Innovation, UCSI University, Malaysia

#### Kasthuri Subaramaniam

Institute of Computer Science and Digital Innovation, UCSI University, Malaysia

### Ismail Ahmed Al-Qasem Al-Hadi

Institute of Computer Science and Digital Innovation, UCSI University, Malaysia Email: 1002058020@ucsiuniversity.edu.my, kasthurisuba@ucsiuniversity.edu.my, ismailAhmed@ucsiuniversity.edu.my

#### **Abstract**

Hand gestures of sign language is a form of non-verbal communication which have been used by most people in their daily life. Sign language is not only used by people with speaking issues but it is also unconsciously used by normal people during their daily interaction with others. This is because it is a way to express their current feelings or the meaning they wanted to convey to others. On other hand, sign language is an important alternative used by people with hearing impairment or speaking obstacles so they can communicate with others. However, not everyone from all walks of life has learned sign language so there will be problems of interaction between them and people with speaking issues. Thus, this research focuses on developing a hand gesture recognition system for accurately interpreting American Sign Language (ASL) so that it can deliver a message that can be understood by others and enable efficient communication. In our system, it will utilize computer vision techniques to analyze hand postures and movements which will include hand sign recognition, finger tracking, and motion estimation. With the pre-developed libraries like OpenCV and MediaPipe are employed in the system so it can recognize and classify ASL gestures based on extracted features. Extensive datasets of ASL hand gestures are collected and annotated to enhance the system's accuracy and robustness. The developed system aims to improve human-computer interaction, enabling seamless communication between deaf individuals and technology. The potential applications include real-time interpretation of ASL gestures for enhanced accessibility and inclusivity.

Keywords: Human-Computer Interaction, American Sign Language, Hand Gesture Recognition System.

### 1. Introduction

In this age of technology, there are many IT related tools or systems that provide various benefits to all walks of life which include Hand Gesture Recognition System (HGRs). The Hand Gesture Recognition System is a type of technology that uses computer vision and machine learning to interpret the motion and sign of individuals [1]. Therefore, this technology can contribute a significant transformation to society nowadays by providing a particular group of people huge benefits who are born with hearing impairment or muted. This is because people with hearing impairment or mute usually rely on sign language, and it is an important tool of communication for them. There is a specific meaning from each gesture in sign language which can construct a complex meaning with the combination of various gestures. In American sign language, where each hand sign will represent different alphabets from A to Z which then can form a specific word. As a result, this project purpose is about developing a Hand Gesture Recognition System that can help in reading sign language. With this system, it can help people with hearing impairment or speaking disabilities to communicate with others more efficiently as well as allow non-signers to get know more about what actually a sign language is [7], [8].

Hand gestures are something that are typically used in daily communication including communicating with people having hearing problems. According to the research, hand gestures can be defined as a type of body language that can be expressed through the center of the palm, finger position and the shape constructed by the hand [9]. There are two classifications of hand gestures which will be the static and dynamic. The static

gestures mostly have to do with the shape of the hand whereas the dynamic gestures deal with a variety of hand movements [9]. For instance, we can find static gestures from the American Sign Language (ASL) at the figure (Fig. 1) in which most of its hand gestures are in a particular shape or pattern that represent an alphabet excluding j and z. Dynamic gestures are mostly related to body language or hand gestures that require movement such as waving, shaking other hands, or even showing the J and Z letter in ASL [11]. It is hard to track the dynamic gestures so in our project we will be focusing more on the ASL static gestures and think of future improvement for the dynamic hand gestures recognition system.

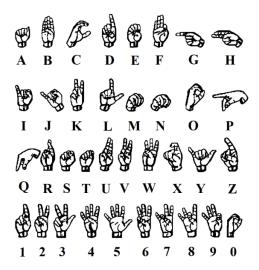



Fig. 1 American Sign Language [10].

## 2. Methodology

## 2.1 Comparison Of Different Methodology in Hand Gestures Recognition System

A comparison of methodology is shown in the table below (Table 1).

Table 1 Comparison Table of methodology in Hand Gesture Recognition System

| Sr.<br>No | Paper Name                                                                                | Year<br>of<br>Public | Techniques                                | Advantages                                                                                                                     |
|-----------|-------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1         | Hand Gesture<br>Recognition via<br>Lightweight<br>VGG16 and<br>Ensemble<br>Classifier [4] | 2022                 | 1.CNN<br>2.Random<br>Forest<br>Classifier | <ul> <li>Random forest is great in handling large input variables.</li> <li>Having the highest classification rate.</li> </ul> |

| 2 | Indian Sign<br>Language<br>Recognition<br>Using Random<br>Forest<br>Classifier [2]                                   | 2021 | 1.Random<br>Forest<br>Classifier                                   | High accuracy even on complex datasets. Robust to missing data as users may not always perform gestures perfectly.                                                                          |
|---|----------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | A Vision-based<br>System for<br>Recognition of<br>Words used in<br>Indian Sign<br>Language<br>Using<br>MediaPipe [6] | 2022 | 1.Random<br>Forest<br>Classifier<br>2.MediaPipe                    | Able to learn complex relationships between the features of the sign language gestures.      Achieving high accuracy in 97.4%.                                                              |
| 4 | Communicating with the Deaf and Hard of Hearing through Automatic Arabic Sign Language Translator [5]                | 2021 | 1.Feature<br>Extraction<br>2.Random<br>Forest<br>Classifier        | Achieving best recognition accuracy out of all other classification algorithms.                                                                                                             |
| 5 | Smart<br>Communication<br>System Using<br>Sign Language<br>Interpretation                                            | 2022 | 1.MediaPipe<br>2.Light<br>Weight<br>Random<br>Forest<br>Classifier | Achieving good accuracy on recognition about 94.69%      Ability in adapting to different sign language datasets by using different feature extraction techniques and hyperparameter tuning |

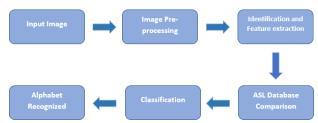



Fig. 2 Proposed concept of Hand Gesture Recognition System

## 2.2 Analysis

We will be revealing the outcomes and analyzing the information about the Hand Gesture Recognition System in interpreting ASL from the survey organized that was distributed on the network through emailing and messaging (Fig. 2). Based on the outcomes of the survey, we will know about whatever this project can provide a system in interpreting ASL for

communication between normal people and deaf or people with hearing problems.

### 2.3 Methodology

In this report, we have employed a quantitative method to gather information regarding the Hand Gesture Recognition System in interpreting ASL. The chosen approach for data collection was a survey form created using Google Forms. The survey form consisted of 2 parts, the first part is about the demographics of the respondents and the second part is about the system inquiries. There are a total of 16 questions that focus on which the 12 questions from the total are mostly asking about the Hand Gesture Recognition System and ASL. The questions included in the survey form were carefully selected to extract essential information required for our research. We aimed to understand more about the Hand Gesture Recognition system so that we can successfully develop the system in interpreting ASL.

The survey form consisted of multiple-choice questions that allowed respondents to select multiple answers from a given list of options. This format enabled us to capture a range of basic understanding of the respondents in the Hand Gesture Recognition System. In addition to multiple-choice questions, we also included rating questions in the survey form. These questions employed a scaling approach to measure respondents' agreement or disagreement with specific statements related to the Hand Gesture Recognition System. This format allowed us to assess the level of agreement towards certain measures or opinions about the Hand Gesture Recognition System in interpreting ASL.

By utilizing the survey form with these question formats and employing various distribution methods, we intended to gather comprehensive insights into the Hand Gesture Recognition System. For reference, the appendix of this report contains 15 survey questions pertaining to the Hand Gesture Recognition System in interpreting ASL.

#### 3. Results and Discussion

In this section, it will be discovering all the validation and testing that are done after the development of the Hand Gesture Recognition system. This chapter is a very significant part that needs to be taken in the entire process of the project development as it will be the sources to know what are the weaknesses and limitations of the current system and the improvement that it needs to enhance in the future. The results are shown in Table 2 and Table 3.

Table 2. Results of Unit Testing

| Table 2. Results of Unit Testing |                                                  |                    |                |  |  |  |  |
|----------------------------------|--------------------------------------------------|--------------------|----------------|--|--|--|--|
| Procedure<br>Description         | <b>Expected Result</b>                           | Actual<br>Result   | Test<br>Result |  |  |  |  |
| Click Start<br>Camera Button     | The camera is started after button was clicked   | Worked as expected | Pass           |  |  |  |  |
| Click Stop                       | The camera frame is                              | Worked as          | Pass           |  |  |  |  |
| Camera Button                    | stopped after the button was clicked             | expected           |                |  |  |  |  |
| Recognizing the                  | All the static ASL hand                          | Worked as          | Pass           |  |  |  |  |
| ASL hand                         | gesture is recognized                            | expected           |                |  |  |  |  |
| gesture                          | successfully on both right and left hand         |                    |                |  |  |  |  |
| Click Exit                       | Close the entire                                 | Worked as          | Pass           |  |  |  |  |
| Button                           | program                                          | expected           | D              |  |  |  |  |
| Click Save<br>Character          | Able to save the recognized ASL hand             | Worked as expected | Pass           |  |  |  |  |
| Button                           | gesture to text file                             | expected           |                |  |  |  |  |
| Click Clear                      | Able to clear the                                | Worked as          | Pass           |  |  |  |  |
| Texts Button                     | textbox with the recognized ASL hand gesture     | expected           |                |  |  |  |  |
| Enable to save                   | Click the Save                                   | Worked as          | Pass           |  |  |  |  |
| message as                       | Messages button to                               | expected           |                |  |  |  |  |
| history                          | store it as history at                           |                    |                |  |  |  |  |
| Click History                    | Open up a new frame                              | Worked as          | Pass           |  |  |  |  |
| Message Button                   | that redirect to the                             | expected           | 1 ass          |  |  |  |  |
| Tressage Batton                  | History Message page                             | emperiou           |                |  |  |  |  |
| Click ASL                        | Allow users to view on                           | Worked as          | Pass           |  |  |  |  |
| Display Button                   | the ASL gestures                                 | expected           |                |  |  |  |  |
|                                  | information on new                               |                    |                |  |  |  |  |
| CIL 1 TR                         | frame                                            | *** 1 1            | D.             |  |  |  |  |
| Click Testing<br>Page Button     | Open up a new frame that redirect to the         | Worked as expected | Pass           |  |  |  |  |
| 1 age Button                     | testing page                                     | expected           |                |  |  |  |  |
| On History                       | Allow long message to                            | Worked as          | Pass           |  |  |  |  |
| Message page,                    | be view in full on the                           | expected           |                |  |  |  |  |
| double click on                  | label of "Full Message:"                         |                    |                |  |  |  |  |
| message                          | Able to clear the full                           | Worked as          | Pass           |  |  |  |  |
| On History<br>Message page,      | shown messages on the                            | expected           | Pass           |  |  |  |  |
| click clear                      | below the label of "Full                         | схрестей           |                |  |  |  |  |
| button                           | Message:"                                        |                    |                |  |  |  |  |
| On History                       | All the history on the                           | Worked as          | Pass           |  |  |  |  |
| Message page,                    | page will be able to                             | expected           |                |  |  |  |  |
| click clear                      | clear                                            |                    |                |  |  |  |  |
| history button<br>Click Text to  | Able to hear the voice                           | Worked as          | Pass           |  |  |  |  |
| Speech                           | of messages to speech                            | expected           | - 400          |  |  |  |  |
| Inside message                   | Information of saved                             | Worked as          | Pass           |  |  |  |  |
| box of History                   | message will be                                  | expected           |                |  |  |  |  |
| Message page                     | recorded such as Date, Time and Message contents |                    |                |  |  |  |  |
| On testing page,                 | It will activate the                             | Worked as          | Pass           |  |  |  |  |
| click start                      | camera frame for hand                            | expected           |                |  |  |  |  |
| camera button                    | gesture recognition process                      |                    |                |  |  |  |  |
| On testing page,                 | It will stop the operation                       | Worked as          | Pass           |  |  |  |  |
| click stop                       | of camera frame                                  | expected           |                |  |  |  |  |
| camera button                    |                                                  | *** 1 .            |                |  |  |  |  |
| On testing page,                 | After camera operated,                           | Worked as          | Pass           |  |  |  |  |
| information box<br>display       | it will show different<br>information such as    | expected           |                |  |  |  |  |
| dispiny                          | recognized alphabets,                            |                    |                |  |  |  |  |
|                                  | hands, interpretation                            |                    |                |  |  |  |  |
|                                  | and FPS                                          |                    |                |  |  |  |  |

Table 3. Results of System Testing

| Procedure Expected Result Actual Test |                           |          |        |  |  |
|---------------------------------------|---------------------------|----------|--------|--|--|
| Description                           | Expected Result           | Result   | Result |  |  |
| Recognizing                           | To ensure the users were  | Worked   | Pass   |  |  |
| ASL hand                              |                           | as       | rass   |  |  |
|                                       | able to recognize the     |          |        |  |  |
| gestures through                      | ASL hand gesture          | expected |        |  |  |
| webcam                                | through the start camera. | *** 1 1  |        |  |  |
| Saving the ASL                        | To ensure that the users  | Worked   | Pass   |  |  |
| hand gestures                         | are able to save the      | as       |        |  |  |
|                                       | recognized ASL            | expected |        |  |  |
|                                       | alphabets to the textbox. |          |        |  |  |
| ASL information                       | To ensure that the users  | Worked   | Pass   |  |  |
| display                               | are able to view types of | as       |        |  |  |
|                                       | ASL hand gestures at the  | expected |        |  |  |
|                                       | page.                     |          |        |  |  |
| Saving the text in                    | To ensure that the users  | Worked   | Pass   |  |  |
| Message History                       | are able to save and view | as       |        |  |  |
|                                       | back the history of text. | expected |        |  |  |
| Testing feature                       | To ensure that the users  | Worked   | Pass   |  |  |
| for users                             | are able to familiarize   | as       |        |  |  |
|                                       | themselves with the ASL   | expected |        |  |  |
|                                       | hand gesture system       | 1        |        |  |  |
|                                       | before directly using it. |          |        |  |  |
| Converting Text                       | To ensure the messages    | Worked   | Pass   |  |  |
| to Speech                             | from the deaf or people   | as       |        |  |  |
| lo speech                             | with hearing problem      | expected |        |  |  |
|                                       | can be heard by the       | capected |        |  |  |
|                                       | others                    |          |        |  |  |
| Stop the system                       | To ensure that the users  | Worked   | Pass   |  |  |
| operation                             | are able to quit the      | as       | 1 ass  |  |  |
| operation                             |                           |          |        |  |  |
|                                       | system by clicking the    | expected |        |  |  |
|                                       | exit button.              |          |        |  |  |

### 4. Conclusion

In conclusion, the project is researched and analyzed comprehensively in order to ensure that the objectives and aims that have been decided at the proposal phase are accomplished. After the development and analysis of the hand gesture recognition system, it can be stated and concluded that all objectives that were planned in the proposal phase have all been accomplished. Since the hand gesture recognition system is specially created for people with hearing problems to have an interaction with others through the gesturing and recording characters of ASL which form a text to bring the meaning they are expressing. At the same time, it may also serve as an educational tool to help people who might be interested in American Sign Language and want to learn it by using the system. This is how the research project's key goals will be accomplished. However, there are no perfect system exist in the world which include our hand gesture recognition system. For instance, one of the limitations of our hand gesture recognition system are unable to recognize in dark environment or classify dynamic gestures. Therefore, there will be future works to be accomplish in order to conquer these limitations stated in this project. Nevertheless, our hand gesture recognition system has already attained the objectives and solve some of the problems stated in the project.

### References

- A. Kumar C, C. Venkatesh, L. Vaishnavi D A, and H. S, Computer vision based Hand gesture recognition system, vol. 20, no. 7, pp. 2859–2866, Jul. 2022. doi:doi:10.14704/nq.2022.20.7.NQ33365
- A. S, A. Potluri, S. M. George, G. R, and A. S, "Indian sign language recognition using random forest classifier," 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2021. doi:10.1109/conecct52877.2021.9622672
- D. Bisht, M. Kojage, M. Shukla, Y. P. Patil, and P. Bagade, "Smart Communication System Using Sign Language Interpretation," 2022 31st Conference of Open Innovations Association (FRUCT), May 2022. doi:10.23919/fruct54823.2022.9770914
- 4. E. L. Ewe, C. P. Lee, L. C. Kwek, and K. M. Lim, "Hand gesture recognition via lightweight VGG16 and ensemble classifier," Applied Sciences, vol. 12, no. 15, p. 7643, 2022. doi:10.3390/app12157643
- G. Latif, J. Alghazo, N. Mohammad, and R. Alghazo, "Communicating with the deaf and hard of hearing through Automatic Arabic Sign Language translator," Journal of Physics: Conference Series, vol. 1962, no. 1, p. 012055, Mar. 2021. doi:10.1088/1742-6596/1962/1/012055
- S. Adhikary, A. K. Talukdar, and K. Kumar Sarma, "A Vision-based system for recognition of words used in indian sign language using MediaPipe," 2021 Sixth International Conference on Image Information Processing (ICIIP), Feb. 2021. doi:10.1109/iciip53038.2021.9702551
- 7. Thwe, P.M., (2019) 'Hand Gesture Detection and Recognition System: A Critical Review'. International Journal of Computer (IJC), vol. 32, no. 1, pp. 64-72.
- Li, G. et al. (2017) 'Hand gesture recognition based on convolution neural network', Cluster Computing, 22(S2), pp. 2719–2729. doi:10.1007/s10586-017-1435-x.
- M. Oudah, A. Al-Naji, and J. Chahl, "Hand gesture recognition based on Computer Vision: A review of techniques," Journal of Imaging, vol. 6, no. 8, p. 73, 2020. doi:10.3390/jimaging6080073
- M. Yasen and S. Jusoh, "A systematic review on hand gesture recognition techniques, challenges and applications," PeerJ Computer Science, vol. 5, 2019. doi:10.7717/peerj-cs.218
- N. Bargellesi, M. Carletti, A. Cenedese, G. A. Susto, and M. Terzi, "A random forest-based approach for hand gesture recognition with wireless wearable motion capture sensors," IFAC-PapersOnLine, vol. 52, no. 11, pp. 128–133, 2019. doi:10.1016/j.ifacol.2019.09.129

### **Authors Introduction**

### Mr. Kong Seh Chong



He is a student majoring in Bachelor of Computer Science (Honours) at Institute of Computer Science and Digital Innovation (ICSDI), UCSI University, Kuala Lumpur, Malaysia.

### Dr. Kasthuri Subaramaniam



She is currently an assistant professor at Institute of Computer Science and Digital Innovation (ICSDI), UCSI University, Kuala Lumpur, Malaysia. She earned both her bachelor's degree in computer science and a master's degree in computer science from the University of Malaya. Her

research interests include human-computer interaction, etc.

### Dr. Ismail Ahmed Al-Qasem Al-Hadi



He is currently an assistant professor at Institute of Computer Science and Digital Innovation (ICSDI), UCSI University, Kuala Lumpur, Malaysia. He has a PhD in Intelligent System. His research interests include AI and Data Mining.