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Abstract 

This paper presents results of pilot experiments that were run to study a human interaction with the UR5e 

collaborative 6-axis robot manipulator in a cooperative assembly task. The participants controlled the equipped with 

a screwdriver UR5e robot using computer vision and gestures. The purpose of the experiments was to identify the 

features of user interaction with the UR5e robot controlled with gestures in a task of a complex object assembly. Ten 

people took part in the experiments. The results of the experiments allowed to conclude on practical efficiency of 

cobots in joint assembly tasks. In addition, we identified preferable by the users location areas during the assembly 

task. 
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1. Introduction 

Due to a significant progress of industrial automation, 

issues of human-robot interaction in a shared 

workspace[1] and efficient distribution of collaborative 

tasks between human and robotic agents[2] became 

critical in the past decades.  In practice, a human-robot 

collaborative assembly task often arises in cases where a 

part of assembly process stages requires a human 

intervention[3]. An example is a situation when a part of 

assembly operations cannot be automated, or full 

automation of operations is impractical due to a high cost 

and complexity of a setup process. Of particular interest 

are cases in which human operations with assembly parts 

alternate with actions of a robot. In this case, the operator 

interacts with the robot through various communication 

technologies. 

A positive user experience (UX) in human-robot 

interaction (HRI) is essential for an efficient organization 

of human-robot production processes. Despite a 

significant number of studies devoted to a methodology 

for assessing the UX in social robotics, a problem of 
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choosing certain methods for assessing UX of a human-

robot collaboration remains open[4]. 

Communication between humans and robots can take 

both verbal and non-verbal forms[5]. In practice, multi-

modal interfaces can be used to communicate with 

industrial robots, including buttons and joysticks, a 

haptic control, speech recognition technologies, a gesture 

control, and a gaze recognition[6]. 

Specifics of a particular manufacturing process may 

impose some restrictions on the human-robot interaction. 

For example, tactile and button controls can distract an 

operator from an assembly process, and noise in a 

manufacturing area can prevent successful recognition of 

voice commands. In this case, an interaction with the 

robot through gestures seems to be the most convenient.  

In this paper, we present results of pilot experiments that 

were run to study a human interaction with the UR5e 

collaborative 6-axis robot manipulator in a cooperative 

assembly task. Our study is aimed at identifying features 

of a user interaction with the gesture-controlled robot 

during the joint assembly task in order to further apply 

the results in practice when designing real manufacturing 

processes. 

2. Related work 

Collaborative robots are often considered safer for 

humans than industrial robots[7]. A number of review 

papers were devoted to a collaborative assembly 

implementation[8][9]. Papers[10][11][12] considered 

various aspects of the methodology for designing and 

implementing HRI in the context of assembly tasks. 

Holm et al.[13] presented the results of an evaluation of 

a human-robot interaction at three industrial 

demonstrators: Mixed Packaging of Cheese, Aircraft 

Wing Rib Assembly and Automotive Engine Mass 

Balancing System Assembly. In [14] and [15], an 

influence of cognitive ergonomics on the interaction 

between a human and an industrial robot during a joint 

assembly was investigated. Neto et al. [16] proposed a 

gesture-based HRI structure in which a robot helps a 

person by passing tools and parts. Paper [17] presented 

the results of experiments with a collaborative robot 

controlled by gestures. For the gestures classification a 

taxonomy proposed in [18] was used. 

Taking into account the literature review we focused on 

the following aspects in the course of preparing pilot 

experiments: 

 Safety; 

 Qualitative and quantitative evaluation of the 

human-robot interaction; 

 Ergonomic requirements for the workspace. 

3. Materials and methods 

3.1. Participants 

The experiments involved 10 people who are not 

professional operators of collaborative industrial robots. 

To guarantee an independent nature of the experiments 

the participants did not contact with each other during the 

experiment. 

3.2. Assembly task and workcell configuration 

During the experiment, participants were asked to 

assemble a chassis of a small mobile robot. The chassis 

consisted of several parts that should be fastened with 

screws. The experimental workcell (Fig. 1) included: 

 UR5e robot equipped with a screwdriver; 

 a work table; 

 a camera for tracking the operator’s movement 

within a danger zone; 

 a camera for a gesture recognition; 

 a screen for displaying information for the 

operator; 

 a chair for the operator. 

 

Fig. 1 The workcell during the experiment 
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3.3. Experimental protocol 

The experiment consisted of three stages. At the first 

stage, the participants were trained to control the UR5e 

robot using predefined gestures. This stage was necessary 

in order to get acquainted with the system of robot control 

gestures. The set of gestures used consisted of symbols 

A, B, C of the American sign language ASL[19]: A was 

for power on of the UR5e robot, B was for playing or 

continuing the robot program, C was for pausing the 

program (Fig. 2). Participants also had an opportunity to 

test a safety system, which stopped the robot if the 

participant's hand entered a working area of the robot. 

 

Fig. 2 The view from a camera for the gesture 

recognition. The participant shows gestures (from left to 

right): power on, play or continue the program, pause 

the program 

At the second stage, the participant was asked to 

assemble the chassis manually (without the robot 

assistance) according to provided instructions.  

At the third stage, the participants assembled the same 

chassis together with the robot. This stage was organized 

as follows. The participant placed several assembly parts 

on the chassis platform and passed them to the robot for 

tightening (Fig. 1) the screws. After the robot fixed the 

current parts on the platform, the participant placed new 

parts on the platform and again transferred the platform 

to the robot. 

After the experiment, the participants were asked to take 

a survey that consisted of the following questions:  

Q1: Was it easier for you to assembly the chassis with 

the UR5e robot assistance than without the robot? 

Q2: How accurately did the UR5e robot execute 

commands based on your gestures?  

Q3: How quickly did the UR5e robot respond to your 

commands?  

Q4: How comfortable were you working with the UR5e 

robot?  

Q5: How good did the UR5e robot perform its task? 

Q6: What disadvantages in the robot operation could you 

note (if any)? 

Q7: What gestures would you prefer to use? 

We used a 5-point Likert-type scale [20] for questions 

Q1-Q5 and a free form for questions Q6 and Q7. 

4. Results 

Fig. 3 presents survey results (Q1-Q5). The x-axis 

(horizontal axis) indicates a question number. The y-axis 

(vertical axis) indicates a number of responses of 

participants for a particular answer to the questions (e.g., 

in the first question seven participants chose the forth 

answer option). A legend on the right side of the graph is 

indicates which color of the graph corresponds to a 

certain answer option in the questions. In general, the 

participants expressed satisfaction with both the work of 

the robot itself and the level of the comfort. However, 

two (of ten) participants noted that self-assembly of the 

chassis without a robot seemed faster to them. 

In response to question Q6 two participants indicated the 

slow screw tightening by the robot, two participants 

noted the need to provide a more explicit feedback from 

the robot, e.g., with voice messages. 

 

Fig. 3 The survey results. Avg: Q1 - 3.7, Q2 - 4.0,  

Q3 - 3.9, Q4 - 3.8, Q5 - 3.7 

In response to question Q7, two participants suggested 

using gesture A to stop and gesture B to continue. Five 

participants indicated that gesture C was inconvenient to 

use. One participant suggested using gestures with one 

and two fingers instead of gestures A and B, respectively. 

The rest of the participants noted that all gestures were 

comfortable for them. 

In the area of the workcell we placed a chair for the 

operator. Before the experiment, we informed each 

participant that he/she could sit or stand as desired. We 

observed that all participants periodically changed 

standing and sitting positions. 
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5. Discussion and conclusions 

The conducted pilot experiments allowed us to formulate 

some hypotheses about the features of the user interaction 

with the gesture-controlled robot UR5e in the context of 

collaborative assembly. 

The first hypothesis suggests to review the choice of the 

robot control gestures. We intentionally avoided using 

special gestures’ sets for industrial robot control from a 

literature review (e.g., [21]) in order to test whether users 

could quickly adapt to gestures with an unusual semantic 

load. We noted that after the training phase, despite the 

fact that all users correctly used all gestures, some of 

them indicated their preferences. It can be assumed that 

in order to improve perception during the learning phase, 

along with the default gesture system, users should be 

prompted to select their own gesture system. 

The second hypothesis relates to the speed of the robot’s 

screw tightening actions. In our experiments, due to 

peculiarities of the end-effector, the robot performed the 

tightening rather slowly. This could negatively affect the 

perception of the robot efficiency by users. We assume 

that when using an automatic screwdriver end-effector 

and increasing the tightening rate, the negative estimates 

associated with the tightening rate would be leveled. 

The third hypothesis concerns the operator position 

during the experiment in order to reduce a biomechanical 

load on the operator. In our experiments, the working 

surface on which the assembly parts were located 

allowed the operator to perform his/her work both sitting 

and standing. Most of the participants selected a sitting 

position during those stages of the experiment when the 

robot performed operations that did not require a human 

intervention and stood up when their intervention was 

required. Perhaps most users would prefer to do all work 

in a sitting position, if conditions of the work cell allow 

it. In addition, we concluded that the location of the 

camera that reads gestures should take into account the 

operator height in order to reduce the biomechanical load 

on his/her hands when showing the gestures. 

The results of our experiments demonstrated that the use 

of the UR5e assisting robot for collaborative assembly 

tasks could be effective from a practical point of view. In 

our further studies, we plan to test the hypotheses we 

have put forward, as well as the degree of influence of 

the interaction features we have identified on the 

efficiency of the assembly process as a whole.  
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