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Abstract 

Synergy is the method that reduces the control inputs of a multi-fingered hand and is utilized for designing 

underactuated robotic hands and efficient control. Calculating conventional synergies depends on the measured 

human grasping postures. Therefore, preparing synergies for the not-human-like multi-fingered hands is 

challenging. We propose a reinforcement learning platform for acquiring synergies of a multi-fingered robotic hand 

through learning a grasping task. The learning process automatically generates postures for creating synergies so 

that this system can prepare synergies for any robotic hand. Experiments show that this reinforcement learning 

platform improves learning tasks and acquires the synergy that is suitable for the learned task. 
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1. Introduction 

Synergy is a practical approach to decrease the control 

inputs of a robotic system with high degrees of freedom 

(DoFs) [1]. This unique advantage of synergy makes the 

multi-fingered hand, which is too complicated for 

industrial use, easy to control, and more adaptive to 

various tasks than simple robotic hands. For reducing 

the control inputs, the synergy is calculated by 

dimensionality reduction methods such as the principal 

component analysis and the gaussian process latent 

variable model. Since these methods are data-driven, 

many postures of a robotic hand performing tasks must 

be gathered. Conventional studies generally use human 

hand postures and transfer the postures to robotic hands 

[2], [3]. These methods allow for creating a low-

dimensional control space for synergy while 

maintaining the dexterity of human manipulation. 

Synergies made from human postures are generally 

applied to humanoid robotic hands. Besides, some 

methods for making synergies for non-humanoid multi-

fingered robotic hands have been proposed. Ficuciello et 

al. [4] developed a mapping method from human hand 

posture to robotic hands. However, these methods 

cannot guarantee synergies to utilize non-humanoid 

robotic hands' dexterity fully. Because kinematics 

between the human hand and the non-humanoid hand, 

such as the number of joints and the dimension, are 

entirely different. Therefore, more suitable synergies 

must exist that can fully exploit the non-human robotic 

hand's kinematics than the synergies made by human 

postures.    
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This paper proposes a reinforcement learning (RL) 

platform to acquire synergies for every kind of robotic 

hand. First, a multi-fingered hand that acquires synergy 

through RL is trained on a specific task. As the learning 

progresses, the postures of successful tasks are 

accumulated in a database. The principal component 

analysis is applied to the postures registered in the 

database to compress the dimension of control inputs. 

We design a reward for the learning so that the 

compressed control space can express many postures in 

which the task can be performed. This allows us to 

obtain synergy with low dimensional controllability and 

high task performance. Simulation-based experiments 

confirm the effectiveness of the method. It is also shown 

to be effective in improving learning efficiency. 

Section 2 describes the details of the method, Section 3 

describes the experimental and evaluation methods, 

Section 4 discusses the experimental results, and 

Section 5 concludes this paper. 

2. Proposed Method 

 This section explains the details of the proposed RL 

platform. 

2.1 Reinforcement Learning 

The RL algorithms used in this platform are the Deep 

Deterministic Policy Gradient (DDPG) method [5], [6], 

and the Hindsight Experience Replay (HER) [7]. An 

overview of the learning system is shown in Fig.1. 

DDPG consists of an actor network that outputs actions 

and a critic network that computes a Q-function for 

evaluating actions in a given state. The actor network 

takes only the state 𝑠 as input, while the critic network 

takes the state 𝑠 and action 𝑎 as input. These networks 

consist of an input layer, three all-coupled layers with 

256 units in each layer, and an output layer. 

Because tasks performed by a multi-fingered hand are 

represented by continuous values for both actions and 

states, the number of possible states and actions is 

significant, and it is often the case that exploration is not 

rewarded. HER adds experience four times per 

experience (𝑠𝑡  || 𝑔, 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑡+1 || 𝑔) . The reward 𝑟, 𝑟′  is 

recalculated for all recorded experiences, along with the 

calculation of the reward for the successful completion 

of the task, as described below. Mini-Batch Learning is 

performed on each network of DDPG using all the 

experiences thus obtained. 

2.2 Reward system 

Fig. 2 shows the rewards for successful and failed 

tasks. 𝑟failure is a reward in the case of task failure. In 

the case of task success, we consider a reward 𝑟success  

and a penalty 𝑒 which is the approximation error of the 

successful grasping posture projected onto the synergy 

space. 𝜆  means a coefficient of feedback for the 

approximation error 𝑒 . Synergy space is a principal 

component space from the dataset of successful 

grasping postures. We aim to learn a task while 

increasing the number of postures during task execution 

that can be accurately represented in the synergy space.  

3. Experiments 

3.1. Task description 

A grasping task is trained on various objects to 

compare the results with synergies computed from the 

postures of humans grasping various objects. The tasks 

are executed on a physics simulator, Mujoco [8]. The 

robot hand running in the simulator is a kinematic 

model like the Shadow Dexterous Hand [9], with 20 

actuators driving 24 joints (2 rotational wrist joints and 

22 hand joints). In addition, one linear motion joint is 

added for the vertical motion of the hand, and the robot 

operated by this system includes 21 actuators and 25 

joints. Actions are represented by vectors representing 

the actuator command values of these 21 joints. 

Fig. 1 Overview of the proposed method 

Fig. 2 Reward system 
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 The task is successful if the agent can grasp an object in 

a random position and orientation on a plane and move 

the object's center to the goal. Each episode consists of 

100 steps, and each step executes a joint command 

value output from the DDPG and updates the state 

accordingly. The state is represented in 64 dimensions 

consisting of joint angles (25 Degrees of Freedoms: 

DoFs), joint angular velocities (25 DoFs), object 

position and posture (3 DoFs + 4 DoFs), object velocity 

and angular velocity (3 DoFs + 3 DoFs) and grasped 

object ID (1 DoF, seven objects). 

 As shown in Fig.1, postures that succeed in grasping 

objects are stored in the dataset. In this experiment, we 

use the joint angles (25 DoFs) as the type of posture to 

be preserved. Besides, five principal components will be 

used for the synergy space. 

3.2. Evaluation 

This experiment evaluates the task success rate during 

learning and the contribution of each principal 

component of the synergy. The contribution rate 𝑟𝑖 is the 

ratio of the 𝑖th principal component to the total variance 

and is expressed as follows: 

𝑟𝑖 =
𝑙𝑖

∑ 𝑙𝑖
𝑁
𝑖=0

  

𝑙𝑖 means the eigenvalue of the 𝑖th principal component. 

𝑁  is the number of the principal components of the 

synergy. 

4. Results 

Fig. 3 and Fig. 4 show the transition of the 

contribution rate (vertical bars) of each principal 

component of the learning synergy and the task success 

rate (black line) during the RL with 𝜆 = 0, 1 , 

respectively. The contribution rate is calculated after the 

number of postures in the dataset exceeds 100. Until 

then, the penalty term 𝜆𝑒 in the reward function is zero, 

and learnings proceed similarly regardless of λ. In both 

settings, the contribution rate decreases significantly 

after adding the penalty term and then increases. In Fig. 

3, the contribution rate decreases as the episodes pass, 

whereas in Fig. 4, the contribution rate increases. From 

these results, the feedback of the approximation error to 

the learned synergy space makes the synergy able to 

express grasping postures during the tasks.  

An interesting fact is that considering synergy during 

RL improves both the contribution of synergy and the 

task success rate. Fig. 3 does not consider synergy, so 

the task success rate fluctuates around 70%. On the 

other hand, Fig.4 shows that the task success rate almost 

converges to 100%. This is because the grasping posture 

generated by the network follows the synergy, which 

includes a dataset of successful grasping postures. Thus, 

the task can be successful with a high probability. 

5. Conclusion 

In this paper, we propose a platform for learning 

synergy among various robot models. We conduct 

experiments in which synergy is acquired in an object-

grasping task using a humanoid hand. The results show 

that this RL platform realizes to make a synergy that can 

express various grasping postures and improves task 

success rate during RL. 

This proposed system can learn not only grasping tasks 

but also more complex tasks such as tool manipulation 

that are appropriate for multi-fingered hands. In the 

future, we will compare the synergies obtained in this 

study with those obtained from humans, study the 

Fig. 3 Transition of contribution rate and task 

success rate during RL (𝝀 = 𝟎) 

Fig. 4 Transition of contribution rate and task 

success rate during RL (𝝀 = 𝟏) 
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reward function for better synergy acquisition, train and 

assign synergy to various multi-fingered hand models, 

and verify the efficiency of RL when the acquired 

synergies are used as an action space. 
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