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Abstract 

A new auto-navigation wheelchair based on ROS system is proposed to deal with the global aging and the low 

behavioral ability of the elderly. Lidar is used to locate and map the active area using gmapping algorithm. 

Real-time map information is transmitted to the processor by the camera and lidar working together. Automatic 

navigation is completed by A* algorithm calculation. Important information points are marked by QR code and 

precisely positioned by camera recognition, which enables wheelchair to have automatic navigation function. It can 

help older people move safer and more freely at home; It can also be applied to nursing homes to reduce the 

pressure of nurses and centralize management of the elder.  
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1. Introduction

According to the World Bank, by the end of 2019, nearly 

654.6 million elderly people were aged worldwide, 

accounting for 9% of the total population. With the 

increase of the total number of the elderly, it has become 

more important to pay attention to the quality of life of 

the elderly, among which, the travel convenience of the 

elderly is the premise of their high quality of life. As a 

frequently used tool for the elderly, its convenience is 

particularly important. Long-term use of traditional 

manual wheelchairs will have a huge burden on people's 

wrists and arms; electric wheelchairs need operators to 

pay attention to the surrounding environment for a long 

time, pay attention to their own control, easy to produce 

fatigue and then cause accidents. 

For the above problems, we will design an automatic 

navigation wheelchair robot built around the ROS1 

platform. In the indoor environment, the surrounding 

environment can be perceived through lidar and multiple 

sensors. Establish a model in gazebo for simulation, and 

use the Gmapping2 algorithm in the SLAM3 algorithm to 

create a graph.4 Then display in rviz simulation. 

Navigation using the A* algorithm5 allows the 

wheelchair for stable autonomous driving in a simulated 

indoor environment.6 

2. Model Building

For the authenticity of the simulation experiments, 

wheelchair models need to be imported into the Gazebo 

simulation environment. The SolidWorks software 

provides plugins to automatically export URDF files with 
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physical shape, collision parameters, and inertia 

parameters, which can be used directly by the Gazebo 

simulation environment. Therefore, SolidWorks software 

was selected to build the physical model of the 

wheelchair. To enable the wheelchair to complete SLAM 

and navigation, add lidar and camera to its pedal position 

and upper backrest. The model established by 

SolidWorks is shown in Fig. 1. 

 

Fig. 1. The model established by SolidWorks 

In SolidWorks only has physical models, and in order 

to complete simulating the real simulation environment in 

Gazebo, it is also necessary to add wheel drive plugin, 

differential drive control plugin, and sensor plugin to the 

established physical model. The simulations of the full 

model in Gazebo are shown in Fig. 2. 

 

Fig. 2. The simulations of the full model in Gazebo 

2.1.  Gazebo simulation environment construction 

The robot model is shown in the Gazebo. But currently 

by default, the robot model in Gazebo is in empty world, 

and there are no emulations similar to rooms, furniture, 

roads, trees.... There are three ways to create a simulation 

implementation in Gazebo: 

• Add built-in components directly to create a 

simulation environment, 

• Manual drawing of the simulation environment, 

• Download using the official or third-party improved 

simulation environment plugins directly. 

The simulation selection manually drew the simulation 

environment. A resthome environment with an area of 

200m2 was drawn with parts of furniture added to the 

environment to simulate the real nursing home 

environment. The established Gazebo simulation 

environment is shown in Fig. 3. 

 

Fig. 3. The established Gazebo simulation environment 

3. Navigation Preparation 

3.1. Slam 

SLAM, also known as CML, is Concurrent Mapping and 

Localization, or simultaneous localization and mapping. 

The question can be described as whether putting a robot 

in an unknown position in an unknown environment, is 

there a way to let the robot move and gradually draw a 

complete map of the environment. The so-called a 

complete map refers to every corner of the room without 

obstacles. 

Gmapping is one of the more commonly used and 

relatively mature SLAM algorithms in the ROS 

open-source community. Gmapping can draw a 

two-dimensional grid map according to the mobile robot 

odometry data and laser data. Correspondingly, 

Gmapping also has certain requirements for hardware: 

• The mobile robot can post an odometry message, 

• Robots need to release radar messages. 

Frist, write the launch file related to the Gmapping 

node and start the Gazebo simulation environment. Then 

start the mapping launch file and start the keyboard 

control node to control the robot movement. Add 

components to display the grid map in Rviz. Finally, the 
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robot movement can be controlled in the Gazebo through 

the keyboard, and the grid map data released by the 

Gmapping can be displayed in Rviz. The display of the 

grid map data in Rviz is shown in Fig. 4. 

 

Fig. 4. The display of the grid map data in Rviz 

3.2. Robot localization 

localization is to calculate the location of the robot itself 

in the global map. Of course, SLAM also includes 

localization algorithm implementation, but SLAM 

localization is used to build a global map, belongs to the 

stage before the beginning of navigation, and the current 

localization is used for navigation. In the navigation, the 

robot needs to move according to the set route. Through 

localization, it can be judged whether the actual trajectory 

of the robot meets expectations. The AMCL feature 

package is provided in the ROS navigation feature 

package for enabling robot localization in navigation. 

AMCL is a probabilistic localization system for 2D 

mobile robots that implements an Adaptive Monte Carlo 

localization method to calculates the robot position using 

particle filters based on existing maps. 

3.3. Coordinate transformation 

The odometry itself can also assist the robot in 

localization, but there are odometry cumulative errors and 

some special cases. AMCL can improve thelocalization 

accuracy by estimating the robot's posture in the map 

coordinate system, and then combining with the 

odometry. The odometry itself can also assist the robot in 

localization, but the odometry has accumulation errors 

and localization errors may occur in some special 

circumstances. AMCL can improve the localization 

accuracy by estimating the robot's posture in the map 

coordinate system, combined with the odometry. 

Odometry localization and AMCL map localization is 

shown in Fig. 5. The simulation of the AMCL algorithm 

in Rviz is shown in Fig. 6. 

• Odometry localization: Only coordinate 

transformation between /odom_frame and 

/base_frame via odometry data, 

• AMCL map localization: You can provide 

coordinate transformations between /map_frame, 

/odom_frame, and /base_frame. 

 

Fig. 5. Odometry localization and AMCL map localization 

 

Fig. 6. The simulation of the AMCL algorithm in Rviz 

4. Navigation Path Planning 

4.1. Introduction to the move_base 

Undoubtedly, path planning is one of the core functions 

in navigation. The move_base function package is 

provided in the navigation function package set of ROS 

to realize this function. The move_base function package 

provides an action-based path planning implementation. 
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move_base can control the robot chassis to move to the 

target position according to the given target point, and 

continuously feedback the robot's own posture and the 

status information of the target point during the 

movement. move_base is mainly composed of global 

planner7and local planner.8 

4.2. Costmap 

Robot navigation relies on a map. The map in ROS is 

actually a picture. This picture has metadata such as 

width, height, and resolution. The gray value is used in 

the picture to indicate the probability of obstacles. 

However, the map constructed by SLAM cannot be used 

directly in navigation, because the map constructed by 

SLAM is a static map. In the navigation process, the 

obstacle information is changeable. The obstacle may be 

removed or new obstacles may be added. Obtain the 

obstacle information from time to time during navigation. 

It is best to set a warning on the edge of the obstacle on 

the map. In the area, try to prohibit robots from entering. 

Therefore, static maps cannot be directly applied to 

navigation. On top of it, some auxiliary information 

needs to be added to the map, such as obstacle data 

obtained from time to time, and data such as inflation 

layer added based on static maps.   
There are two cost maps: global_costmap and 

local_costmap. The former is used for global planner, and 

the latter is used for local planner. Both cost maps can be 

stacked in multiple layers, and generally have the 

following layer: 

• Static map layer: Static map built by the SLAM, 

• Obstacle map layer: The obstacle layer tracks the 

obstacles as read by the sensor data, 

• Inflation layer: Inflate on the above two layers to 

avoid the robot from hitting obstacles, 

• Other layers: Other layers can be implemented and 

used in the costmap via pluginlib. 

4.3. Collision algorithm 

Inflation is the process of propagating cost values out 

from occupied cells that decrease with distance. For this 

purpose, we define 5 specific symbols for costmap values 

as they relate to a robot. Collision algorithm is show Fig. 

7. 

 

Fig. 7. Collision algorithm 

• "Lethal" cost means that there is an actual 

(workspace) obstacle in a cell. So if the robot's center 

were in that cell, the robot would obviously be in 

collision, 

• "Inscribed" cost means that a cell is less than the 

robot's inscribed radius away from an actual obstacle. 

So the robot is certainly in collision with some 

obstacle if the robot center is in a cell that is at or 

above the inscribed cost, 

• "Possibly circumscribed" cost is similar to 

"inscribed", but using the robot's circumscribed 

radius as cutoff distance. Thus, if the robot center 

lies in a cell at or above this value, then it depends on 

the orientation of the robot whether it collides with 

an obstacle or not. We use the term "possibly" 

because it might be that it is not really an obstacle 

cell, but some user-preference, that put that particular 

cost value into the map. For example, if a user wants 

to express that a robot should attempt to avoid a 

particular area of a building, they may inset their 

own costs into the costmap for that region 

independent of any obstacles. Note, that although the 

value is 128 is used as an example in the diagram 

above, the true value is influenced by both the 

inscribed_radius and inflation_radius parameters as 

defined in the code, 

• "Freespace" cost is assumed to be zero, and it means 

that there is nothing that should keep the robot from 

going there, 

• "Unknown" cost means there is no information about 

a given cell. The user of the costmap can interpret 

this as they see fit, 

• All other costs are assigned a value between 

"Freespace" and "Possibly circumscribed" depending 

on their distance from a "Lethal" cell and the decay 

function provided by the user. 
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4.4. parameter setting 

In the simulation, it may happen that the robot enters the 

expansion area when the local planner does not conform 

to the global planner and appears to “feign death.” In 

order to avoid this situation as much as possible. Through 

the physical model of the robot itself, the parameters set 

by the global planner and the local planner can be 

changed. In this way, in the global planner, the planner 

will be as far away from the obstacles as possible, and in 

the local planner, even if the robot deviates from the 

global planner, it will retain more free space between the 

obstacles, thereby avoiding the “feign death” situation. 

Set the maximum speed in the x direction in the basic 

local planner parameters to 0.3 m/s, configure the 

expansion radius of the global costmap to 0.3m, and the 

expansion radius of the local costmap to 0.1m. Set the 

size of the local cost map to 3m * 3m * 3m. Set the 

obstacle perception range to 2m, and eliminate the 

obstacle range after it is greater than 2.5m. 

5. Conclusion 

First start the Gazebo simulation environment; load the 

launch file related to the startup navigation; load the Rviz 

component with the added configuration data. Navigate 

by setting the destination through the 2D Nav Goal on the 

Rviz toolbar. The action trajectory is shown in Fig. 8. 

The green line represents the global planner, and the red 

line represents the local planner. For the obstacles that 

appear on the global planner route, the simulation will 

avoid the obstacles through local planner and guide the 

robot to reach the target point. Obstacle placement is 

shown in Fig. 9. Local planner avoid obstacles is shown 

Fig. 10. Reaching the final target point is shown Fig. 11. 

 

Fig. 8. The action trajectory 

 

Fig. 9. Obstacle placement 

 

Fig. 10. Local planner avoid obstacles 

 

Fig. 11. Reaching the final target point 
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