
© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

Simulation Research on Automatic Navigation of Indoor Wheelchair

Peng Shi1,2,, Yizhun Peng1,2, *

1 College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222,

China,
2 Advanced Structural Integrity International Joint Research Centre, Tianjin University of Science and Technology,

Tianjin, 300222, China

E-mail:* pengyizhun@tust.edu.cn

www.tust.edu.cn

Abstract

A new auto-navigation wheelchair based on ROS system is proposed to deal with the global aging and the low

behavioral ability of the elderly. Lidar is used to locate and map the active area using gmapping algorithm.

Real-time map information is transmitted to the processor by the camera and lidar working together. Automatic

navigation is completed by A* algorithm calculation. Important information points are marked by QR code and

precisely positioned by camera recognition, which enables wheelchair to have automatic navigation function. It can

help older people move safer and more freely at home; It can also be applied to nursing homes to reduce the

pressure of nurses and centralize management of the elder.

Keywords: wheelchair, ROS, Gmapping, A* algorithm

1. Introduction

According to the World Bank, by the end of 2019, nearly

654.6 million elderly people were aged worldwide,

accounting for 9% of the total population. With the

increase of the total number of the elderly, it has become

more important to pay attention to the quality of life of

the elderly, among which, the travel convenience of the

elderly is the premise of their high quality of life. As a

frequently used tool for the elderly, its convenience is

particularly important. Long-term use of traditional

manual wheelchairs will have a huge burden on people's

wrists and arms; electric wheelchairs need operators to

pay attention to the surrounding environment for a long

time, pay attention to their own control, easy to produce

fatigue and then cause accidents.

For the above problems, we will design an automatic

navigation wheelchair robot built around the ROS1

platform. In the indoor environment, the surrounding

environment can be perceived through lidar and multiple

sensors. Establish a model in gazebo for simulation, and

use the Gmapping2 algorithm in the SLAM3 algorithm to

create a graph.4 Then display in rviz simulation.

Navigation using the A* algorithm5 allows the

wheelchair for stable autonomous driving in a simulated

indoor environment.6

2. Model Building

For the authenticity of the simulation experiments,

wheelchair models need to be imported into the Gazebo

simulation environment. The SolidWorks software

provides plugins to automatically export URDF files with

932

mailto:pengyizhun@tust.edu.cn

Peng Shi, Yizhun Peng

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

physical shape, collision parameters, and inertia

parameters, which can be used directly by the Gazebo

simulation environment. Therefore, SolidWorks software

was selected to build the physical model of the

wheelchair. To enable the wheelchair to complete SLAM

and navigation, add lidar and camera to its pedal position

and upper backrest. The model established by

SolidWorks is shown in Fig. 1.

Fig. 1. The model established by SolidWorks

In SolidWorks only has physical models, and in order

to complete simulating the real simulation environment in

Gazebo, it is also necessary to add wheel drive plugin,

differential drive control plugin, and sensor plugin to the

established physical model. The simulations of the full

model in Gazebo are shown in Fig. 2.

Fig. 2. The simulations of the full model in Gazebo

2.1. Gazebo simulation environment construction

The robot model is shown in the Gazebo. But currently

by default, the robot model in Gazebo is in empty world,

and there are no emulations similar to rooms, furniture,

roads, trees.... There are three ways to create a simulation

implementation in Gazebo:

• Add built-in components directly to create a

simulation environment,

• Manual drawing of the simulation environment,

• Download using the official or third-party improved

simulation environment plugins directly.

The simulation selection manually drew the simulation

environment. A resthome environment with an area of

200m2 was drawn with parts of furniture added to the

environment to simulate the real nursing home

environment. The established Gazebo simulation

environment is shown in Fig. 3.

Fig. 3. The established Gazebo simulation environment

3. Navigation Preparation

3.1. Slam

SLAM, also known as CML, is Concurrent Mapping and

Localization, or simultaneous localization and mapping.

The question can be described as whether putting a robot

in an unknown position in an unknown environment, is

there a way to let the robot move and gradually draw a

complete map of the environment. The so-called a

complete map refers to every corner of the room without

obstacles.

Gmapping is one of the more commonly used and

relatively mature SLAM algorithms in the ROS

open-source community. Gmapping can draw a

two-dimensional grid map according to the mobile robot

odometry data and laser data. Correspondingly,

Gmapping also has certain requirements for hardware:

• The mobile robot can post an odometry message,

• Robots need to release radar messages.

Frist, write the launch file related to the Gmapping

node and start the Gazebo simulation environment. Then

start the mapping launch file and start the keyboard

control node to control the robot movement. Add

components to display the grid map in Rviz. Finally, the

933

Simulation Research on Automatic

 The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

robot movement can be controlled in the Gazebo through

the keyboard, and the grid map data released by the

Gmapping can be displayed in Rviz. The display of the

grid map data in Rviz is shown in Fig. 4.

Fig. 4. The display of the grid map data in Rviz

3.2. Robot localization

localization is to calculate the location of the robot itself

in the global map. Of course, SLAM also includes

localization algorithm implementation, but SLAM

localization is used to build a global map, belongs to the

stage before the beginning of navigation, and the current

localization is used for navigation. In the navigation, the

robot needs to move according to the set route. Through

localization, it can be judged whether the actual trajectory

of the robot meets expectations. The AMCL feature

package is provided in the ROS navigation feature

package for enabling robot localization in navigation.

AMCL is a probabilistic localization system for 2D

mobile robots that implements an Adaptive Monte Carlo

localization method to calculates the robot position using

particle filters based on existing maps.

3.3. Coordinate transformation

The odometry itself can also assist the robot in

localization, but there are odometry cumulative errors and

some special cases. AMCL can improve thelocalization

accuracy by estimating the robot's posture in the map

coordinate system, and then combining with the

odometry. The odometry itself can also assist the robot in

localization, but the odometry has accumulation errors

and localization errors may occur in some special

circumstances. AMCL can improve the localization

accuracy by estimating the robot's posture in the map

coordinate system, combined with the odometry.

Odometry localization and AMCL map localization is

shown in Fig. 5. The simulation of the AMCL algorithm

in Rviz is shown in Fig. 6.

• Odometry localization: Only coordinate

transformation between /odom_frame and

/base_frame via odometry data,

• AMCL map localization: You can provide

coordinate transformations between /map_frame,

/odom_frame, and /base_frame.

Fig. 5. Odometry localization and AMCL map localization

Fig. 6. The simulation of the AMCL algorithm in Rviz

4. Navigation Path Planning

4.1. Introduction to the move_base

Undoubtedly, path planning is one of the core functions

in navigation. The move_base function package is

provided in the navigation function package set of ROS

to realize this function. The move_base function package

provides an action-based path planning implementation.

934

Peng Shi, Yizhun Peng

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

move_base can control the robot chassis to move to the

target position according to the given target point, and

continuously feedback the robot's own posture and the

status information of the target point during the

movement. move_base is mainly composed of global

planner7and local planner.8

4.2. Costmap

Robot navigation relies on a map. The map in ROS is

actually a picture. This picture has metadata such as

width, height, and resolution. The gray value is used in

the picture to indicate the probability of obstacles.

However, the map constructed by SLAM cannot be used

directly in navigation, because the map constructed by

SLAM is a static map. In the navigation process, the

obstacle information is changeable. The obstacle may be

removed or new obstacles may be added. Obtain the

obstacle information from time to time during navigation.

It is best to set a warning on the edge of the obstacle on

the map. In the area, try to prohibit robots from entering.

Therefore, static maps cannot be directly applied to

navigation. On top of it, some auxiliary information

needs to be added to the map, such as obstacle data

obtained from time to time, and data such as inflation

layer added based on static maps.
There are two cost maps: global_costmap and

local_costmap. The former is used for global planner, and

the latter is used for local planner. Both cost maps can be

stacked in multiple layers, and generally have the

following layer:

• Static map layer: Static map built by the SLAM,

• Obstacle map layer: The obstacle layer tracks the

obstacles as read by the sensor data,

• Inflation layer: Inflate on the above two layers to

avoid the robot from hitting obstacles,

• Other layers: Other layers can be implemented and

used in the costmap via pluginlib.

4.3. Collision algorithm

Inflation is the process of propagating cost values out

from occupied cells that decrease with distance. For this

purpose, we define 5 specific symbols for costmap values

as they relate to a robot. Collision algorithm is show Fig.

7.

Fig. 7. Collision algorithm

• "Lethal" cost means that there is an actual

(workspace) obstacle in a cell. So if the robot's center

were in that cell, the robot would obviously be in

collision,

• "Inscribed" cost means that a cell is less than the

robot's inscribed radius away from an actual obstacle.

So the robot is certainly in collision with some

obstacle if the robot center is in a cell that is at or

above the inscribed cost,

• "Possibly circumscribed" cost is similar to

"inscribed", but using the robot's circumscribed

radius as cutoff distance. Thus, if the robot center

lies in a cell at or above this value, then it depends on

the orientation of the robot whether it collides with

an obstacle or not. We use the term "possibly"

because it might be that it is not really an obstacle

cell, but some user-preference, that put that particular

cost value into the map. For example, if a user wants

to express that a robot should attempt to avoid a

particular area of a building, they may inset their

own costs into the costmap for that region

independent of any obstacles. Note, that although the

value is 128 is used as an example in the diagram

above, the true value is influenced by both the

inscribed_radius and inflation_radius parameters as

defined in the code,

• "Freespace" cost is assumed to be zero, and it means

that there is nothing that should keep the robot from

going there,

• "Unknown" cost means there is no information about

a given cell. The user of the costmap can interpret

this as they see fit,

• All other costs are assigned a value between

"Freespace" and "Possibly circumscribed" depending

on their distance from a "Lethal" cell and the decay

function provided by the user.

935

http://wiki.ros.org/costmap_2d/hydro/obstacles
http://wiki.ros.org/pluginlib
https://github.com/ros-planning/navigation/blob/jade-devel/costmap_2d/include/costmap_2d/inflation_layer.h#L113

Simulation Research on Automatic

 The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

4.4. parameter setting

In the simulation, it may happen that the robot enters the

expansion area when the local planner does not conform

to the global planner and appears to “feign death.” In

order to avoid this situation as much as possible. Through

the physical model of the robot itself, the parameters set

by the global planner and the local planner can be

changed. In this way, in the global planner, the planner

will be as far away from the obstacles as possible, and in

the local planner, even if the robot deviates from the

global planner, it will retain more free space between the

obstacles, thereby avoiding the “feign death” situation.

Set the maximum speed in the x direction in the basic

local planner parameters to 0.3 m/s, configure the

expansion radius of the global costmap to 0.3m, and the

expansion radius of the local costmap to 0.1m. Set the

size of the local cost map to 3m * 3m * 3m. Set the

obstacle perception range to 2m, and eliminate the

obstacle range after it is greater than 2.5m.

5. Conclusion

First start the Gazebo simulation environment; load the

launch file related to the startup navigation; load the Rviz

component with the added configuration data. Navigate

by setting the destination through the 2D Nav Goal on the

Rviz toolbar. The action trajectory is shown in Fig. 8.

The green line represents the global planner, and the red

line represents the local planner. For the obstacles that

appear on the global planner route, the simulation will

avoid the obstacles through local planner and guide the

robot to reach the target point. Obstacle placement is

shown in Fig. 9. Local planner avoid obstacles is shown

Fig. 10. Reaching the final target point is shown Fig. 11.

Fig. 8. The action trajectory

Fig. 9. Obstacle placement

Fig. 10. Local planner avoid obstacles

Fig. 11. Reaching the final target point

References

1. Koubâa, Anis, ed. Robot Operating System (ROS). Vol. 1.

Cham: Springer, 2017.

936

https://link.springer.com/book/10.1007/978-3-319-26054-9
https://link.springer.com/book/10.1007/978-3-319-26054-9

Peng Shi, Yizhun Peng

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

2. G. Grisetti, C. Stachniss and W. Burgard, "Improving

Grid-based SLAM with Rao-Blackwellized Particle Filters

by Adaptive Proposals and Selective Resampling,"

Proceedings of the 2005 IEEE International Conference on

Robotics and Automation, 2005, pp. 2432-2

3. Y. Abdelrasoul, A. B. S. H. Saman and P. Sebastian, "A

quantitative study of tuning ROS gmapping parameters and

their effect on performing indoor 2D SLAM," 2016 2nd

IEEE International Symposium on Robotics and

Manufacturing Automation (ROMA), 2016, pp. 1-6

4. W. Xiaoyu, L. Caihong, S. Li, et al. "On Adaptive Monte

Carlo Localization Algorithm for the Mobile Robot Based

on ROS," 2018 37th Chinese Control Conference (CCC),

2018, pp. 5207-5212.

5. J. Röwekämper, C. Sprunk, G. D. Tipaldi, et al.On the

position accuracy of mobile robot localization based on

particle filters combined with scan matching, Intelligent

robots and systems,2012:3158-3164.

6. Gilli é ron, Pierre-Yves, et al. "Indoor navigation

performance analysis." Proceedings of the 8th European

Navigation Conference GNSS. No. CONF. 2004.

7. Huijuan Wang, Yuan Yu and Quanbo Yuan, "Application

of Dijkstra algorithm in robot path-planning," 2011 Second

International Conference on Mechanic Automation and

Control Engineering, 2011, pp. 1067-1069.

8. Eduardo J. Molinos, Ángel Llamazares, Manuel Ocaña,

Dynamic window based approaches for avoiding obstacles

in moving, Robotics and Autonomous Systems, Volume

118, 2019, Pages 112-130, ISSN 0921-8890.

Authors Introduction

Mr. Peng Shi

He received a bachelor's degree in

automation from Tianjin University

of Science and Technology in 2019.

He currently holds a master's

degree in electronic information

from Tianjin University of Science

and Technology.

Dr. Yizhun Peng

He is an Associate Professor in

Tianjin University of Science &

Technology. He received a

doctor's degree in control theory

and control engineering from the

Institute of Automation,Chinese

Academy of Sciences, in 2006.

His research field is intelligent

robot and intelligent control.

937

https://ieeexplore.ieee.org/abstract/document/1570477
https://ieeexplore.ieee.org/abstract/document/1570477
https://ieeexplore.ieee.org/abstract/document/1570477
https://ieeexplore.ieee.org/abstract/document/1570477
https://ieeexplore.ieee.org/abstract/document/1570477
https://ieeexplore.ieee.org/abstract/document/7847825
https://ieeexplore.ieee.org/abstract/document/7847825
https://ieeexplore.ieee.org/abstract/document/7847825
https://ieeexplore.ieee.org/abstract/document/7847825
https://ieeexplore.ieee.org/abstract/document/7847825
https://ieeexplore.ieee.org/abstract/document/7847825
https://ieeexplore.ieee.org/abstract/document/8482698
https://ieeexplore.ieee.org/abstract/document/8482698
https://ieeexplore.ieee.org/abstract/document/8482698
https://ieeexplore.ieee.org/abstract/document/8482698
https://ieeexplore.ieee.org/document/6385988
https://ieeexplore.ieee.org/document/6385988
https://ieeexplore.ieee.org/document/6385988
https://ieeexplore.ieee.org/document/6385988
https://infoscience.epfl.ch/record/60104
https://infoscience.epfl.ch/record/60104
https://infoscience.epfl.ch/record/60104
https://infoscience.epfl.ch/record/60104
https://ieeexplore.ieee.org/abstract/document/5987118
https://ieeexplore.ieee.org/abstract/document/5987118
https://ieeexplore.ieee.org/abstract/document/5987118
https://ieeexplore.ieee.org/abstract/document/5987118
https://doi.org/10.1016/j.robot.2019.05.003
https://doi.org/10.1016/j.robot.2019.05.003
https://doi.org/10.1016/j.robot.2019.05.003
https://doi.org/10.1016/j.robot.2019.05.003

