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Abstract 

In this paper, synchronization of novel five-dimensional (5D) autonomous hyperchaotic systems is studied. The 

synchronization control law is proposed based on the center translation method. A structure compensator is 

formulated to make the mathematical model of the error system the same as that of the response system, and a 

linear feedback controller is designed via the Lyapunov stability theory to make the error system globally 

asymptotically stable at the origin. Thus, the two 5D hyperchaotic systems are synchronized. Some relevant 

numerical simulation results, such as the curves of the corresponding synchronization state variables and the errors, 

are given to illustrate the feasibility and effectiveness of the synchronization control law. 

Keywords: novel 5D hyperchaotic system, hyperchaos synchronization, center translation method, Lyapunov 
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1. Introduction

Hyperchaos was first presented in 1979 by Otto 

Rössler.1 Because hyperchaos is much more 

complicated than chaos, hyperchaos synchronization has 

greater application significance and engineering value in 

secure communication. 

In this paper, the mathematical model of the novel 5D 

hyperchaotic system is given as the drive system. 

Hyperchaos synchronization of the 5D systems is 

studied based on the center translation method. 

Corresponding numerical simulation results are 

presented to demonstrate the validity of the 

synchronization method. 

2. The Novel 5D Hyperchaotic System

The dynamic equations of the novel 5D hyperchaotic 

system are 

( )

( )

( )

1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

1 1 1

,

,

,

,

, 1

x a y x

y c a x cy w x z

z bz x y

v mw

w y hv

= −

= − + + −

= − +

=

= − −

where 
1 1 1 1 1, , , ,x y z v w R  are state variables, and a =

23, b = 3, c = 18, m = 12 and h = 4.2 

Let the initial values of the system (1) be (x10, y10, z10, 

v10, w10) = (1, 1, 1, 1, 1), then the Lyapunov exponents 

respectively are λ11 = 0.8732 > 0, λ12 = 0.1282 > 0, λ13 = 

-0.0013 ≈ 0, λ14 = -0.5770 < 0 and λ15 = -8.4231 < 0. It 

indicates that the system (1) is hyperchaotic. The 

attractors of the 5D hyperchaotic system (1) are shown 

in Fig. 1. 
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Fig. 1.  Attractors of the 5D hyperchaotic system: (a1) z-x-y; (a2) v-x-y; (a3) w-x-y; (a4) x-v-z; (a5) x-w-z; (a6) w-x-v 

3. Hyperchaos Synchronization Based on Center 

Translation Method 

3.1. Formulation of error system 

Take the system (1) as the drive system, then the 

response system is formulated as 
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where 
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and 
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are structure compensator and synchronization 

controller to be designed. Let us = 0, uc = 0, and the 

initial values of the response system (2) be (x20, y20, z20, 

v20, w20) = (5, 0, 4, 3, 8), then the Lyapunov exponents 

respectively are λ21 = 0.9121 > 0, λ22 = 0.1175 > 0, λ23 = 

-0.0008 ≈ 0, λ24 = -0.5533 < 0 and λ25 = -8.4755 < 0. It 

shows that the response system (2) is also hyperchaotic. 

Let 
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be the synchronization error and 
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then the error system is simplified as 
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Comparing the mathematical model of the error 

system (3) with that of the controlled system (2) in Ref. 
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2, it can be found that the two models are similar. Hence, 

the synchronization controller uc is designed as 
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where 
1 2 3 4 5, , , , 0k k k k k  . 

3.2. Design of linear feedback synchronization 

controller 

Theorem 1. Let x = 0 be an equilibrium point for 

( ) ,=x f x  where : nD R→f  is a locally Lipschitz 

map from a domain nD R  into nR . Let : nV R R→  

be a continuously differentiable function such that 
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then x = 0 is globally asymptotically stable.2 

Take a continuously differentiable function 

2 2 2 2 2

1 2 3 4 5

1

2

h
V e e e e e

m

 
= + + + + 

 
 

as a Lyapunov function candidate for the error system 

(3). Then, the derivative V  is derived as 
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For 0V  , the parameters 1k , 2k , 3k , 4k  and 5k  

should satisfy that 

1
1

1

22
2

3
3

3
4

44
5

5
5

0,
,2 0,2

3
3 30,0,

,2
2 0,

0,
, 1,

0,0, 1.

0,
0,

c
ck a

k a
k

kk c
k c

k
k b

k b k
h

kk k
m

k
k

+ − 
 −

=

=− 


  =
+ 

 − =

 =




 

Thus, the linear feedback synchronization controller uc 

is designed as 
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From Theorem 1, the error system (3) is globally 

asymptotically stable at the origin. It indicates that the 

response system (2) is synchronized with the drive 

system (1). 

3.3. Numerical simulation 

Remark 1. The initial values of the drive system (1) and 

the response system (2) are (x10, y10, z10, v10, w10) = (1, 1, 

1, 1, 1) and (x20, y20, z20, v20, w20) = (5, 0, 4, 3, 8) 

respectively in this paper. 

Definition 1. After adding the structure compensator us 

and the linear feedback synchronization controller uc to 

the response system (2), the Lyapunov exponents of the 

response system (2) are called sub-Lyapunov 

exponents.3 

Theorem 2. The response system (2) and the drive 

system (1) will synchronize only if the sub-Lyapunov 

exponents are all negative.3 

The curves of the errors and the corresponding state 

variables before and after adding the structure 

compensator us and the linear feedback synchronization 

controller uc to the response system (2) are shown in Fig. 

2 and Fig. 3 respectively. Comparing Fig. 3 with Fig. 2, 

it can be found that the errors e1, e2, e3, e4 and e5 

converge to zero asymptotically and rapidly and the 

corresponding state variables are synchronized well 

after adding us and uc to the response system (2). 

Moreover, the sub-Lyapunov exponents of the response 

system (2) are λ21c = -1.0292, λ22c = -1.0355, λ23c =  

-3.0000, λ24c = -17.4669 and λ25c = -17.4690, which are 

all negative. From Theorem 2, the response system (2) 

and the drive system (1) have synchronized. 
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(a) Errors 

 
(b) State variables 

Fig. 2.  Before: (a) Errors; (b) State variables 

 
(a) Errors 

 
(b) State variables 

Fig. 3.  After: (a) Errors; (b) State variables 

4. Conclusions 

Synchronization of the novel 5D hyperchaotic systems 

is proposed based on the center translation method in 

this paper. Numerical simulation results illustrate the 

feasibility of the synchronization method. The study has 

some engineering significance. Furthermore, the circuit 

implementation of the synchronization system is under 

investigation and will be reported elsewhere. 
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