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Abstract

In this paper, synchronization of novel five-dimensional (5D) autonomous hyperchaotic systems is studied. The
synchronization control law is proposed based on the center translation method. A structure compensator is
formulated to make the mathematical model of the error system the same as that of the response system, and a
linear feedback controller is designed via the Lyapunov stability theory to make the error system globally
asymptotically stable at the origin. Thus, the two 5D hyperchaotic systems are synchronized. Some relevant
numerical simulation results, such as the curves of the corresponding synchronization state variables and the errors,
are given to illustrate the feasibility and effectiveness of the synchronization control law.
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1. Introduction

Hyperchaos was first presented in 1979 by Otto
Réssler.!  Because hyperchaos is much more
complicated than chaos, hyperchaos synchronization has
greater application significance and engineering value in
secure communication.

In this paper, the mathematical model of the novel 5D
hyperchaotic system is given as the drive system.
Hyperchaos synchronization of the 5D systems is
studied based on the center translation method.
Corresponding numerical simulation results are
presented to demonstrate the validity of the
synchronization method.

2. The Novel 5D Hyperchaotic System

The dynamic equations of the novel 5D hyperchaotic
system are

X = a(yl _Xl)’

¥, =(c—a)x +cy, +W, — Xz,

2, =-bz, +xy,,

v, =mw,,

W, =-y, —hv,, (1)

where X, Y,,Z,V;,W, € R are state variables, and a =

23,b=3,c=18,m=12and h=4.2

Let the initial values of the system (1) be (X0, Y10, Z10,
Vi, Wio) = (1, 1, 1, 1, 1), then the Lyapunov exponents
respectively are A11 = 0.8732 >0, 112 = 0.1282 > 0, A3 =
-0.0013 = 0, M4 = -0.5770 < 0 and A5 = -8.4231 < 0. It
indicates that the system (1) is hyperchaotic. The
attractors of the 5D hyperchaotic system (1) are shown
in Fig. 1.
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Fig. 1. Attractors of the 5D hyperchaotic system: (al) z-x-y; (a2) v-x-y; (a3) w-x-y; (a4) x-v-z; (a5) x-w-z; (a6) w-x-v

3. Hyperchaos Synchronization Based on Center
Translation Method

3.1. Formulation of error system

Take the system (1) as the drive system, then the
response system is formulated as

X, =a(YZ _X2)+usl+uc1’

¥, =(C—a)X, +Cy, + W, — X,Z, + U, + U,
2, =-bz, + X,Y, + U + U,

V, =mw, +Uy, +U,,,

W, =—Y, —hv, + U, + U, (2)
where
T
us = [usl usZ USS us4 usS]
and
_ T
uc - [ucl ucz uc3 uc4 ucS]
are structure compensator and synchronization

controller to be designed. Let us= 0, uc = 0, and the
initial values of the response system (2) be (x20, Y20, Z20,
V20, Woo) = (5, 0, 4, 3, 8), then the Lyapunov exponents
respectively are A»1 = 0.9121 > 0, A2 = 0.1175 > 0, Ap3 =

-0.0008 =~ 0, X24 = -0.5533 < 0 and Azs = -8.4755 < 0. It
shows that the response system (2) is also hyperchaotic.
Let

T
e=[e, e e e &]
T
=[X2 =X YooY 4,4 VooV W, _Wl]
be the synchronization error and
T
us = [usl usZ us3 us4 uss]
i 0
XoZy + %2, = 2% 7,
XY XY, + 2X1Y1
0
- 0 -
then the error system is simplified as
€ = a(ez _el)+uc1

é,=(c—a)e +ce, +e,—ee;+U,,

&, =—be, +ee, + U,

€, =me, +U,,
6, =—€,—he, +U. (3)

Comparing the mathematical model of the error
system (3) with that of the controlled system (2) in Ref.
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2, it can be found that the two models are similar. Hence,
the synchronization controller uc is designed as
T
uc = [ucl ch uc3 uc4 uc5]
T

= [_klel _kzez _k3es _k464 _kses] )

where K, K,,K;,K,, Ks 20

3.2. Design of linear feedback synchronization
controller

Theorem 1. Let x = 0 be an equilibrium point for
x=f(x), where f:D—R"is a locally Lipschitz

map from a domain D R" into R". Let V:R" - R
be a continuously differentiable function such that

V(0)=0 and V(x)>0, ¥x#0
||x||—>oo:>V(x)—>oo
\/(x)<0, VX # 0

then x = 0 is globally asymptotically stable.?
Take a continuously differentiable function

1 h
% =E(ef +€ +e§+—e§+e§J
m

as a Lyapunov function candidate for the error system
(3). Then, the derivative V is derived as

. . . h .
V =geg +6e,6, +e,6, + —¢€,6, +6.E
m
2 2
=—(k,+a)e; +cee, —(k,—c)e;

—(ky+b)e; —k4%ej —k.eZ

c 3
s-(kﬁa—ijef —(kz —Ecjez2

—(ky+b)e; —k4%ej —k.eZ.

For V <0, the parameters K, , K, , K, , Kk, and Kk
should satisfy that

k1+a—E>O, K>C_a
2 1 E ’ kl:O,
3
k,-—c>0, 3 k, =30,
2 k, >—c,
= 2 = k=0,
k;+b>0,
k3>—b, k =1
h 47
k4a>0, k, >0, k=1.
K, >0, ks >0,

Thus, the linear feedback synchronization controller uc
is designed as

T
uc:[ucl U, Ug Uy uc5]

=[0 —30e, 0 e, —&].

From Theorem 1, the error system (3) is globally
asymptotically stable at the origin. It indicates that the
response system (2) is synchronized with the drive
system (1).

3.3. Numerical simulation

Remark 1. The initial values of the drive system (1) and
the response system (2) are (X1o, Y10, Z10, V10, Wi0) = (1, 1,
1, 1, 1) and (Xzo, Y20, Z20, V20, Wzo) = (5, 0, 4, 3, 8)
respectively in this paper.
Definition 1. After adding the structure compensator us
and the linear feedback synchronization controller uc to
the response system (2), the Lyapunov exponents of the
response system (2) are called sub-Lyapunov
exponents.®
Theorem 2. The response system (2) and the drive
system (1) will synchronize only if the sub-Lyapunov
exponents are all negative.®

The curves of the errors and the corresponding state
variables before and after adding the structure
compensator us and the linear feedback synchronization
controller uc to the response system (2) are shown in Fig.
2 and Fig. 3 respectively. Comparing Fig. 3 with Fig. 2,
it can be found that the errors e;, e, es €; and es
converge to zero asymptotically and rapidly and the
corresponding state variables are synchronized well
after adding us and uc to the response system (2).
Moreover, the sub-Lyapunov exponents of the response
system (2) are Az = -1.0292, Apc = -1.0355, Az =
-3.0000, Azac = -17.4669 and Azsc = -17.4690, which are
all negative. From Theorem 2, the response system (2)
and the drive system (1) have synchronized.

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022



)1‘1-11'3

Errors: Before

(a) Errors

State Variables: Before

(b) State variables

Fig. 2. Before: (a) Errors; (b) State variables
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Fig. 3. After: (a) Errors; (b) State variables

4. Conclusions

Synchronization of the novel 5D hyperchaotic systems
is proposed based on the center translation method in
this paper. Numerical simulation results illustrate the
feasibility of the synchronization method. The study has
some engineering significance. Furthermore, the circuit
implementation of the synchronization system is under
investigation and will be reported elsewhere.
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