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Abstract 

We designed an efficient multi-scale Gaussian filtering circuit whose coefficients of the standard deviation are 

selectable from any multiple of the square root of two. We also developed an image sensor system composed of a 

CMOS image sensor and a field-programmable gate array that contains the proposed filtering circuit. The system 

provided eight images whose resolution is 160 × 120 filtered by different scales of Gaussian filters at 156 frames / 

second. 
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1. Introduction

Efficient extraction of multi-scale visual features is 

required for a wide range of image processing systems. 

In particular, many useful bio-inspired visual processing 

algorithms, such as saliency-based visual attention1 and 

the scale-invariant feature transform2, rely on multi-scale 

Gaussian and/or Gabor filters because the early stages of 

visual nervous system are modeled as such filters3,4 based 

on physiological studies (Refs. 5 and 6 for examples).  

In the visual nervous system, the spatial property 

modeled as the Gaussian and the difference of Gaussians 

(DoG) with multiple scales is implemented in the retina3, 

and all the visual functions are achieved using the output 

signal of the retina. Therefore, multi-scale Gaussian 

filtering is an essential component for implementing a 

wide range of vision-based tasks. Although the 

computation itself of spatial filtering is simple, the 

computational cost required for spatial filters with a large 

kernel is very high because the computation contains a 

large number of multiply-accumulate (MAC) operations. 

One of the most widely used solutions for this problem is 

separating the two-dimensional (2D) filter into two one-

dimensional (1D) filters when the filter kernel is 

separable. Several studies on hardware implementation 

of 2D filters also use the technique to achieve efficient 

filtering architecture (Refs. 7 and 8 for examples).  

The separable filter technique is applicable to multi-

scale Gaussian filtering. In addition to the technique, the 

recursive algorithm proposed by Burt can further reduce 

the computational cost of filtering.9 In the case of 

hardware implementation, the algorithm is an effective 

way to save the hardware resources required. 
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In the present study, we designed a multi-scale 

Gaussian filtering circuit based on the recursive filtering 

algorithm9. In order to save hardware resources, we used 

fixed-point computation, and investigated the adequate 

bit width with which errors are negligible even after 

repetitive recursive filtering. We also developed an 

image sensor system composed of a CMOS image sensor 

and a field-programmable gate array (FPGA) that 

contains the proposed filtering circuit. 

2. Filtering algorithm 

2.1. Fast recursive filtering algorithm 

The fast recursive filtering algorithm implemented in this 

study is based on the algorithm described in Ref. 9. The 

algorithm applies separated 1D filters whose kernel is 

very simple to the input image. A set of kernels that differ 

in width but not in weights are convolved recursively. Fig. 

1(a) shows how the kernel is convolved with the input 

data for the first two scales. The basic size of the kernel 

is five, and therefore, only five MAC operations are 

needed for 1D filtering in each scale. The kernel with the 

doubled spacing between two weights (𝑑 in Fig. 1(a)) is 

applied to the output image of the previous filter to 

increase the scale by one. One scale increment doubles 

the standard deviation of the Gaussian filter. 

2.2. Algorithm implemented in the circuit 

In order to enable configuration of the standard deviation 

of the Gaussian with a smaller step, we modified the 

recursive filtering algorithm described in section 2.1. Fig. 

1(b) shows the kernels of the first three scales of the 

modified algorithm. Different from the original 

algorithm, the basic size of the kernel of the modified 

algorithm is three, and one-scale increment in the 

modified algorithm corresponds to multiplying the 

standard deviation by the square root of two. The spacing 

(𝑑 in Fig. 1(b)) is expressed as: 

𝑑 = 2𝑚 (1) 

𝑚 = 𝑓𝑙𝑜𝑜𝑟 (
𝑛 − 1

2
) (2) 

where 𝑛 represents the scale. The following two sets of 

weight values are employed depending on the scale: 

(𝑤0, 𝑤1) =  {
(𝑎1, 𝑏1)(𝑛 is  odd)

(𝑎2, 𝑏2)(𝑛 is even)
(3) 

The following constraints should be met for 

normalization: 

𝑎1 + 2𝑏1 = 1 (4) 

𝑎2 + 2𝑏2 = 1 (5) 

The following set of parameters was used in this study:  

(𝑎1, 𝑏1) = (0.625, 0.1875) (6) 

(𝑎2, 𝑏2) = (0.5, 0.25) (7) 

In the circuit implemented in this study, the filters are 

applied using fixed point computation to save hardware 

resources. An appropriate bit width was examined using 

the simulation described in section 3. 

3. Simulation 

3.1. Filter kennel 

We examined the impulse response of the modified 

Gaussian filtering algorithm by using Python. Fig. 2 

shows the impulse response of the filter whose scales are 

1, 2, 3, and 4. The dashed lines plot fitted Gaussian 

functions. Gaussian functions are well-approximated by 

the weights achieved by the algorithm.  

Table 1 shows the standard deviations of the fitted 

Gaussian functions. The ratio of the standard deviation of 

the adjacent scales is approximated by the square root of 

two, for a larger scale in particular.  

Fig. 1.  Relationship between scale 𝒏  and a set of kernels. 

(a) Original algorithm. (b) Modified algorithm. 
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Table. 1  Standard deviations of the fitted Gaussian functions. 

scale 𝑛 1 2 3 4 5 

𝜎𝑛 0.639 1.057 1.482 2.201 3.128 

𝜎𝑛/𝜎𝑛−1 - 1.654  1.402  1.485  1.421  

 

scale 𝑛 6 7 8 9 10 

𝜎𝑛 4.467 6.322 8.971 12.694 17.964 

𝜎𝑛/𝜎𝑛−1 1.428  1.415  1.419  1.415  1.415  

 

3.2. Bit width 

We examined an appropriate bit width for implementing 

the modified Gaussian filtering algorithm by comparing 

the error between the filtered image computed with 

double-precision floating point and that computed with a 

fixed point. In this experiment, the bit width of the input 

and output images was eight, and the bit width with 

which the accumulation of the error was negligible was 

investigated.  Here, the round-to-even method was 

employed. We chose several images from SIDBA10 as an 

input image in this experiment. Fig. 3(a) shows an 

example of the relationship between the scale and the 

maximum error in the filtered image. Although Fig. 3(a) 

shows the relationship for a single image shown in Fig. 

3(b), the results for other input images were essentially 

the same. When eight and nine bits were used, the error 

exceeded 0.5; this magnitude of the error can affect the 

least significant bit (LSB). On the other hand, the error 

never exceeded 0.5 when ten or more bits were used. 

Taking these results into account, we adopted ten-bit 

computing for hardware implementation. 

4. Circuit and system implementation 

4.1.  System structure 

We implemented the multi-scale Gaussian filtering 

algorithm described in section 2.2 into an FPGA (Xilinx 

Artix-7 XC7A100T), and developed an image sensor 

system composed of a CMOS image sensor (Omni 

Vision OV5642), the FPGA, and a USB interface. Fig. 4 

and 5 show the structure and the appearance of the image 

sensor system, respectively.  

The CMOS image sensor in the system acquires 

image with 160 ×120 pixels at a maximum rate of 156 

frames / second. The multi-scale Gaussian filtering 

circuit in the FPGA provides up to eight Gaussian filtered 

images with different standard deviations; the filtered 

images are sent to PC via the USB interface.  

         
                

   

   

   

   

 
  
 
 
 

         
   

   

   

   

                

 
  
 
 
 

   

   

   

   

 
  
 
 
 

         
                

   

   

   

   

 
  
 
 
 

         
                

Fig. 2.  Impulse responses of the Gaussian filters. Solid black 

circles represent the weight and the dashed line plots the fitted 

curve of the Gaussian function. (a)(b)(c) and (d) shows the 

weights of the filters whose scales are 1, 2, 3, and 4, 

respectively. 

   

   

     

     

      

      

      

      
   

   

   

   

   

 
  
  
  

  
  
 
 

Fig. 3.  (a) Relationship between the filter scale and  the 

maximum error in the filtered image. (b) Input image10 used 

in this experiment. 
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4.2. Circuit implementation 

Fig. 6(a) shows the structure of the multi-scale Gaussian 

filtering circuit implemented in the FPGA.  

First, the address counter circuit generates a read-out 

address signal, and an image is read out from the raw 

image buffer (not shown in the figure). Here, the image 

is read out along the X axis and is sent to the component 

      d “c  c d   f  D f      ” through the selector, 

w  c              z  d       d “S”. The 1D filter circuit 

applies the filter along the X axis, and the filtered image 

is recorded in the temporal RAM.  

Next, the address counter circuit generates a read-out 

address signal again, and the image is read out from the 

temporal RAM. Here, the image is read out along the Y 

axis and is sent to the cascade of 1D filters through the 

selector. The 1D filter circuit applies the filter along the 

Y axis, and the filtered image is recorded in the temporal 

RAM. The repetition of filtering along the X and Y axes 

provides Gaussian filtered images with a large scale.  

The scale counter outputs 𝑛, which is the scale of the 

current filter applied to the image. The RAM selector 

compares the current scale 𝑛 with the target scales, and 

records the filtered image if the current scale equals one 

of the target scales. Components in the later stage (not 

shown) can read the filtered images by sending signals to 

the address ports (ADDR1 and 2 in the figure).  

Fig. 6(b) shows the structure of the component 

      d “cascade of 1D filters”. This circuit is composed 

of a cascade of 1D filter circuits, each of which performs 

a single scale of Gaussian filtering. The selector 

compares the current scale 𝑛 with the target scales, and 

outputs the filtered image with the target scale. The 

number of the cascaded filter implemented in this study 

was two.  

Fig. 7 shows the time chart of a cascade of two 1D 

filter circuits. This circuit performs two scales of 

       
           S       f c      

Fig. 4.  System structure of the image sensor system with the 

multi-scale Gaussian filtering circuit 

Fig. 5.  Appearance of the image sensor system. (a) Front side. 

(b) Back side. 

Fig. 6.  (a) Structure of the entire multi-scale Gaussian filtering 

c  c         S   c      f     c               d “c  c d d  D 

f      ”   c  S   c      f      D f      c  c     T   w         d 

the width of the filter are determined by the current scale 𝒏. 
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Gaussian filtering at 𝑇 × 2𝑀 + 2 × 𝑇 × 𝑁 μs , where 𝑇 

represents the clock cycle, 𝑀  represents the maximum 

number of 𝑚 in equation (2), and 𝑁 represents the total 

number of pixels. In the present study, = 0.02 𝜇s, 𝑀 =

4, and 𝑁 = 19200 pixels, and the total time required is 

about 768 𝜇s. One additional cascaded 1D filter performs 

one more scale of filtering in 0.02 × 2𝑀 μs.  

Fig. 6(c) shows the structure of the 1D filtering circuit. 

This circuit in Fig. 6(c) consists of the following five 

components: a shift register that stores data of 2𝑀+1 + 1 

pixels, two selectors that select the pixel to be multiplied 

by the weights at the current scale 𝑛, two selectors that 

select the value of the weights for 𝑤0  and 𝑤1 , three 

multipliers, and an adder that sums the three multiplied 

values. The values described at the nodes of the shift 

register (𝑖 + 2𝑚, … , 𝑖 − 2𝑚)  denote the indices of the 

stored pixel data, and 𝑖 represents the center of the stored 

data.  

The circuit in Fig. 6(c) operates as follows. First, 

image data read from the RAM are stored in the shift 

register. Next, three multipliers multiply values of the 

pixels with the following indices by weights chosen by 

the selectors; the indices are 𝑖 , 𝑖 − 2𝑚 , and 𝑖 + 2𝑚 . 

Finally, the adder at the bottom sums three multiplied 

values and rounds the result to a ten-bit value.  

4.3. Evaluation 

We evaluated the multi-scale Gaussian filtering circuit 

alone and the entire image sensor system with the circuit 

using the methods described below.   

We evaluated the multi-scale Gaussian circuit by 

comparing the output of the circuit in response to a step 

input shown in Fig.  8(a) with the result computed with 

double-precision floating point. In this evaluation, we 

implemented a circuit that generates a step image shown 

in Fig.  8(a) in the FPGA. Fig.  8(b)(c) show the 

differences between the circuit output and the floating-

point operation for Gaussian scales 5 and 6, respectively. 

Here, the bit width of the image sent from the circuit is 

eight, and the input step amplitude is the maximum in 

eight bits, i.e. 𝐴 = 255, and therefore, the error was larger 

than that shown in Fig.  3(a). However, the error was still 

smaller than the LSB.  

We evaluated the entire image sensor system by 

presenting objects (a human in this experiment) to the 

image sensor. Fig.  9(a) shows the raw image, and Fig.  

9(b), (c), and (d), show the Gaussian-filtered images 

Fig. 8.  Difference between the output of the circuit in response 

to a step input and the result computed with double-precision 

floating point.  (a) Input pattern. The value of 𝑨 is 255. (b)(c) 

The difference for Gaussian scales 5 and 6.   

Fig. 9.  Output images of the sensor system. (a) Raw image. 

(b)(c)(d) Gaussian-filtered images whose  scales are 2, 4, and 

6. 

 

                  
    

     
     

   
   

 D f       

 D f       

Fig. 7.  Time chart of a cascade of 1D filters. 𝑻 and 𝑵 represent 

the clock cycle and the total number of pixels, respectively. 𝑴 

represents the maximum number of 𝒎 in equation (2). 
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whose scales are 2, 4, and 6. Gaussian-filtered images 

with a larger scale are smoothed more widely. These 

output results were obtained at 156 frames / second. 

5. Conclusion 

In the present study, we developed a multi-scale 

Gaussian filtering circuit and developed an image sensor 

system with the filtering circuit. The filtering circuit 

alone and the entire system were evaluated by providing 

a step input and by presenting real-world scenes. The 

results showed that the filtering circuit provided filtered 

images whose error is smaller than the LSB in response 

to a step input and that the image sensor system provided 

eight-scale Gaussian-filtered images at 156 frames / 

second. 
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