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Abstract 

The paper first studies the reason why a three-dimensional volume conservative chaotic system proposed by 

Vaidyanathan and Volos can generate chaos by analyzing mechanics and energy. Then, based on numerical 

methods including balance characteristics, Lyapunov exponents, bifurcation diagrams, phase trajectories and so on, 

multi-stability of the three-dimensional volume conservative chaotic system are discovered. In addition, the three-

dimensional volume conservative chaotic system is realized by using FPGA, and all the results from FPGA 

implementation are consistent with those from numerical analysis.  
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1. Introduction

In 1964, Hénon and Heiles proposed a conservative 

chaotic system for the first time in the study of three-

body motion, which was called the Hénon-Heiles 

system1,2. In 1994, Sprott proposed some simple three-

dimensional chaotic systems,it is often called Sprott-A 

system3. This system is actually a special case of the 

Nosé-Hoover system, also known as the Nose-Hoover 

conservative oscillator4-6. Subsequently, in 1997 and 

1999, Sprott and Thomas respectively gave the jerk 

conservative chaotic system and the conservative chaotic 

system with sine function7-8. Subsequent research on 

conservative chaotic characteristics is gradually attracting 

researchers' attention9-15.  

In addition, in recent years, chaotic systems with multi-

stability characteristics are gradually becoming a hot 

issue in chaotic theory and application research16-21. 

Multi-stability phenomenon usually refers to the 

phenomenon that different manifolds coexist in the 

system when different initial values are taken when the 

system parameters are unchanged. In particular, when the 

initial value of the system is changed, the number of 

manifolds tends to be infinite, this phenomenon is called 

super multi-stability22-24. Multi-stability is ubiquitous in 

many natural systems and usually has an important 

impact on system performance. Although there are no 

attractors in conservative systems, they are extremely 

sensitive to small fluctuations under initial conditions. 

Due to the existence of multiple stability, the system is 

extremely sensitive to small disturbances under initial 

conditions, which often leads to the coexistence of 

multiple streams. This uncertainty and complexity also 

attract more and more attention25,26.  

The rest of the paper is organized as follows: in 

Section 2, we conduct a mechanical analysis of a three-

dimensional conservative chaotic system and reveal the 

cause of chaos. Then We conduct research on whether the 

system produces multi-stability in Section 3. After that, 

FPGA implementation of this system is showed in 

Section 4, while Section 5 concludes the paper. 
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2. A three-dimensional conservative chaotic 

system and its analysis 

In 2013, Vaidyanathan and Volos9 proposed a three-

dimensional volumetric conservative chaotic system, 

which was described as: 

    
2 21
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                             (1) 

Among them, x, y, z are state variables, a and b are state 

parameters. When setting a=0.05, b=1, the calculated 

Lyapunov exponent is: 

      
1 2 30.0395, 0, 0.0395L L L= = = −        (2) 

It can be seen that the sum of Lyapunov exponents of 

system (1) is 0, so the system is a conservative chaotic 

system. 

When choosing different initial values and parameters 

of the system, the system can also present rich periodic or 

chaotic dynamics. In order to further study the reasons for 

the chaotic dynamics of the system (1) from the 

perspective of energy characteristics, first convert it into 

the Kolmogorov form as: 
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H x x y z= + + . Through the analysis, it can be 

found that the system (3) consists of two parts: the 

conservative moment ( ) ( )J x H x  and the external 

moment u. 

  When we set a=b=10, take the initial value

( , , ) (1,1,1)x y z = , the phase diagram under the action of 

conservative moment and the phase diagram under the 

action of conservative moment and external moment are 

obtained, as shown in Fig. 1. From Fig.1, it can be seen 

that the external torque is the main reason for the chaotic 

phenomenon of the system. 

 
(a) Phase diagram under conservative torque 

 
(b) Phase diagram under the combined action of 

conservative torque and external torque 

Fig.1 Phase diagram 

3. Multi-stability analysis of the three-

dimensional conservative chaotic system  

Generally, systems with hidden attractors are extremely 

sensitive to initial values, and there will often be 

situations where multiple attractors coexist, that is called 

multi-stability. Multi-stability means that when the 

system parameters are fixed, corresponding to different 

initial values, the system presents different dynamic 

characteristics, and the corresponding phase diagram will 

also show different attractors. 

3.1. a≠b 

When we select the initial value of the system (1)

( , , )x y z =
0(1, , 3)y − , the parameters a=1, b=1.6, where 

0y  varies from -5 to 5, and the Lyapunov exponent 

diagram and bifurcation diagram that vary with 
0y  are 

shown in Fig.2 and Fig.3. It can be seen that when

0 ( 5, 4.3) ( 3.3,0.2) (1.5,5)y  − − − , the maximum Lyapunov 

exponent of the system is greater than 0, and the system 

is in a chaotic state; when
0 ( 4.3, 3.3) (0.2,1.5)y  − − , 
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the motion state of the system changes between cycles 

and counter cycles. When we select the initial value 

( , , ) (1, 2.75, 3)x y z = − − , the phase diagram and Poincaré 

cross-sectional diagram drawn are shown in Fig.4 and 

Fig.5. It can be seen that the system (1) is in a state of 

chaos. 

 
Fig.2 Lyapunov exponent diagram with y0 

 
Fig.3 Bifurcation diagram 

 
Fig.4 Phase diagram 

 
Fig.5 Poincaré cross-sectional diagram  

We further analyze system (1), when selecting 

different initial values, we find hidden attractors in the 

system. For example, when we select the initial value 

( , , )x y z = (1, 4, 3)− − , (1,1, 3)− , (1,3.75, 3)− , the system 

will have three quasi-periodic attractors in different states 

as shown in Fig.6, which are represented by red, blue and 

green lines respectively. When we select ( , , )x y z =

(1, 4.5, 3)− − , (1, 1, 3)− − , the system will show two quasi-

periodic attractors in different states as shown in Fig.7, 

which are represented by blue and red lines respectively. 

When we select ( , , )x y z = (1,0.76, 3)− , (1,3.64, 3)− is 

selected, the system will show two different states of 

periodic attractors as shown in the figure, which are 

represented by blue and red lines respectively. The above 

numerical analysis fully shows that when a≠b, system (1) 

has multi-stability. 

 
Fig.6 Three quasi-periodic attractors 
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Fig.7 Two chaotic attractors 

 
Fig.8 Two period attractors 

3.2 a=b 

When we select the initial value of the system (1)

( , , )x y z =
0( ,1,1)x , the parameters a=b=1, where 

0x  

varies from -5 to 5, and the Lyapunov exponent diagram 

and bifurcation diagram that vary with 
0x  are shown in 

Fig.9 and Fig.10. It can be seen that when

0 ( 5, 0.5) (0.5,5)x  − − , the maximum Lyapunov exponent 

of the system is greater than 0, and the system is in a 

chaotic state; when
0 ( 0.5,0.5)x  − , the motion state of 

the system changes between cycles and counter cycles. 

 
Fig.9 Lyapunov exponent diagram with x0 

 

 
Fig.10 Bifurcation diagram 

Then we further study the multi-stability of system (1) 

in this state. Select the initial value ( , , )x y z =

(2, 1.45, 2.75)− − , (2, 1.85, 3.5)− − , (2, 3.8,1.45)− , 

respectively, and system (1) will appear chaotic, quasi-

periodic, and periodic attractors, as shown in Fig.11. 

Through the above numerical analysis, when a=b,   

system (1) exhibits multiple stability phenomena. 

 
(a) Phase diagram with ( , , )x y z = (2, 1.45, 2.75)− −  

 
(b) Phase diagram with ( , , )x y z = (2, 1.85, 3.5)− −  
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(c) Phase diagram with ( , , )x y z = (2, 3.8,1.45)−  

Fig.11 System phase diagram under different initial values 

4. FPGA implementation of the three-

dimensional conservative chaotic system 

The FPGA hardware device used in this article is the 

DE2i-150 development board. First, we model and design 

system (1) and build its circuit structure model.Then the 

circuit model is converted into the corresponding FPGA 

hardware description language VHDL through Signal 

Compiler, for synthesis, compilation, adaptation and 

simulation. Finally, download the generated file to the 

FPGA hardware development board, and observe the 

image by debugging the oscilloscope. 

When designing the circuit model, since system (1) is a 

continuous-time chaotic system, it needs to be discretized 

and converted into a digital circuit, which is built through 

the MATLAB/Simulink library. The equation discretized 

by Euler algorithm is:  

( 1) ( ) [ ( ) ( ) ( )]

( 1) ( ) [ ( ) ( ) - ( )]

( 1) ( ) [1- ( ) ( ) - ( ) ( )]

x n x n T x n z n ay n

y n y n T y n z n bx n

z n z n T x n x n y n y n

+ = +  +


+ = + 
 + = + 

                 (4) 

among them, T  is the sampling time; ( )x n , ( )y n ,

( )z n are the iterative sequence in the current state; 

( 1)x n+ ， ( 1)y n+ ， ( 1)z n+ are the iterative sequence 

in the next cycle state. 

Take the parameters a=1, b=1.6, the initial value 

( , , )x y z = (1,1, 3)− , (1, 1, 3)− − , (1,0.76, 3)− , and the 

phase diagram observed by the oscilloscope is shown in 

the Fig.12(a)-(c). It can be found from Fig.12 that the 

FPGA hardware implementation results are consistent 

with the numerical analysis results, which further verifies 

the physical feasibility and multi-stability of system (1). 

 
(a) Phase diagram with ( , , )x y z = (1 1 -3)，，  

 
(b) Phase diagram with ( , , )x y z = (1 -1 -3)，，  

 
(c) Phase diagram with ( , , )x y z = (1 0.76 -3)， ，  

Fig.12 When taking different initial values and parameters, 

the system phase diagram observed by the oscilloscope 

5. Conclusion 

By analyzing the mechanical properties of the three-

dimensional conservative chaotic system proposed by 

Vaidyanathan and Volos, the reasons for the chaos of the 

system are revealed. Then by changing the system 

parameters and initial values, it is found that the system 

has rich dynamic behaviors, including periodic 

characteristics, quasi-periodic characteristics, and chaotic 

characteristics. In addition, the rich dynamic 

characteristics of the three-dimensional system are 
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verified from the perspectives of numerical analysis and 

FPGA implementation, and the FPGA hardware 

experimental results are consistent with the numerical 

analysis results, which further demonstrates the physical 

feasibility of the system in a physical sense. 
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