A Generalized Hamiltonian Conservative System with Multi-scroll Chaotic Flows

Jingwen Liu*, Zhonggao Chen
College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
E-mail: *1229778495@qq.com
www.tust.edu.cn

Abstract
By analyzing mechanics and energy of a three-dimensional volume conservative chaotic system proposed by Vaidyanathan and Volos, a new generalized conservative chaotic system with multi-scroll chaotic flows is found based on the corresponding Hamiltonian energy. The new system satisfies both volume conservation and energy conservation. By analyzing the equilibrium characteristics of the system, equilibrium points of the new system are found to be a line. In addition, the number of scrolls of conservative chaotic flows of the new system depend on the corresponding Hamiltonian energy. The paper provides a new conservative chaotic model for chaos application.

Keywords: conservative, multi-scroll, Hamiltonian energy, equilibrium

1. Introduction
Chaos is a special physical phenomenon in nonlinear systems\(^1\), which widely exists in the fields of physics and life science. Therefore, people are committed to constructing chaotic systems with better performance\(^2\). Compared with single scroll chaotic systems or double scroll chaotic systems, multi-scroll chaotic systems have more control parameters and more corresponding key parameters. Moreover, it can present complex multi-direction grid scroll in phase space. The number and shape of scroll can also be controlled and adjusted by the parameters of the system\(^3\). In practical application, the increase of scrolls number in chaotic systems are realized by increasing the number of equilibrium points. Multi-scroll chaotic attractors can show more complex chaotic dynamic behaviors\(^4,6\), and has high application value in chaotic information processing\(^10\), chaotic neural network\(^7\) and chaotic secure communication\(^12\), which makes the multi-scroll chaotic system have a very broad application prospect in practical engineering\(^10,13\). Therefore, the research of multi-scroll chaotic system is becoming a research hotspot in the field of chaos\(^14,18\).

However, there are few studies on the multi-scroll flows of conservative chaotic systems. In this paper, single direction multi-scroll flows and double direction multi-scroll flows are constructed and their direction and number are both controllable. At the same time, the feasibility and effectiveness of the method of constructing multi-scroll flows is verified by Lyapunov exponent spectrum and phase diagram, which provides a new method for the construction of multi-scroll flows and a new conservative chaotic model for chaos application.

2. Construction of Four-dimension Conservative Chaotic System
Firstly, a new four-dimension conservative system is found by analyzing mechanics and energy of a three-dimensional volume conservative chaotic system proposed by Vaidyanathan and Volos\(^19\). It can be expressed as

\[
\dot{x} = J(x) \nabla H(x). \tag{1}
\]
Where, \(J(x) = \begin{bmatrix} 0 & a & x \\ -a & 0 & y \\ x & -y & 0 \end{bmatrix} = 0 \), \(\nabla H(x) = [x \ y \ z \ 1]^T \).

Secondly, Equation (1) can be described as
\[
\begin{align*}
\dot{x} &= ay + xz \\
\dot{y} &= -ax + yz \\
\dot{z} &= 1 - x^2 - y^2 - 2w \\
\dot{w} &= -z - 2zw
\end{align*}
\] (2)

Where \(x, y, z \) and \(w \) are state variable, and \(a \) is a system parameter, the divergence of the system (2) is
\[
\nabla f = \begin{bmatrix} \frac{\partial \dot{x}}{\partial x} + \frac{\partial \dot{y}}{\partial y} + \frac{\partial \dot{z}}{\partial z} + \frac{\partial \dot{w}}{\partial w} \end{bmatrix} = 0.
\] (3)

Moreover, the derivative of Hamiltonian energy is
\[
\dot{H} = \nabla H(x)^T J(x) \nabla H(x) = 0.
\] (4)

According to the above analysis, the system satisfies both Hamiltonian energy conservation and volume conservation. Meanwhile, the equilibrium equation of system (2) is
\[
\begin{align*}
ay + xz &= 0 \\
-ax + yz &= 0 \\
1 - x^2 - y^2 - 2w &= 0 \\
-z - 2zw &= 0
\end{align*}
\] (5)

It can be found that the equilibrium point of the system (2) is obtained as \((0,0,z,-0.5)\), which are found to be a line.

3. Construction of Conservative Chaotic Systems with Multiple multi-scroll flows

In this part, multi-scroll flows are obtained by changing Hamiltonian energy. According to Equation (1), the Hamiltonian energy of system (2) is obtained as
\[
H(x) = \frac{1}{2} x^2 + y^2 + z^2 + w.
\] (6)

Set system parameter \(a = 1 \), the initial value \((x,y,z,w) = (x(0),1,1,1)\). Lyapunov exponent spectrum of the system (2) is shown in Fig. 1.

3.1. Characteristic analysis of the single direction multi-scroll conservative system

In order to obtain the multi-scroll conservative system, the Hamiltonian energy is firstly changed by introducing piecewise functions. Set \(\nabla H(x) = [f(x) y z 1]^T \), and Equation (2) can be described as
\[
\begin{align*}
\dot{x} &= ay + xz \\
\dot{y} &= -af(x) + yz \\
\dot{z} &= 1 - xf(x) - y^2 - 2w \\
\dot{w} &= -z - 2zw
\end{align*}
\] (7)

\[
f(x) = \begin{cases}
+x + Q, & x < -Q \\
\sin(x), & -N \leq x \leq Q \\
-x - N, & x > N
\end{cases}
\] (8)

Where \(f(x) \) satisfy mapping, and \(Q = n_1\pi, N = n_2\pi, n_1, n_2 \in Z^* \). The Hamiltonian energy of system (2) is obtained as
\[
H(x) = \frac{1}{2} (y^2 + z^2) + w + \int f(x) \text{d}x.
\] (9)

To further explain the process of generating multi-scroll in system (7), set \(Q = 0 \) and the initial value \((x,y,z,w) = (\frac{\pi}{2},1,1,1)\). When \(N = 2\pi, 4\pi \) and \(6\pi \), a 2-scroll flow, a 3-scroll flow and a 4-scroll flow extended...
in the positive direction of x-axis are respectively shown in Fig. 3.

Set $N = 0$ and the initial value $(x, y, z, w) = (\frac{\pi}{2}, 1, 1, 1)$. When $Q = 2\pi, 4\pi$ and 6π, a 2-scroll flow, a 3-scroll flow and a 4-scroll flow extended in the negative direction of x-axis are respectively shown in Fig. 4.

In summary, it can be concluded that flows with different numbers of scrolls can be obtained by changing the values of N and Q to change the Hamiltonian energy of the system (7), and both the direction and the number of scrolls is controllable.

3.2. Characteristic analysis of the double direction multi-scroll conservative system

In the above, multi-scroll flows along the x-axis direction are obtained in system (7) by changing the Hamiltonian energy of x variable. Similarly, grid type multi-scroll flows along x and y axis directions can be simultaneously obtained by changing the Hamiltonian energy of x variable and y variable. Set $\nabla H(x) = [f(x) \ f(y) \ z]^{T}$, and Equation (2) can be described as

\[
\begin{align*}
\dot{x} &= af(y) + xz \\
\dot{y} &= -af(x) + yz \\
\dot{z} &= 1 - xf(x) - yf(y) - 2w' \\
\dot{w} &= -z - 2zw \\
\end{align*}
\]

(10)

\[
\begin{align*}
f(x) &= \begin{cases}
 x + Q_1, & x < -Q_1 \\
 \sin(x), & -N_1 \leq x \leq Q_1, \\
 x - N_1, & x > N_1
\end{cases} \\
\end{align*}
\]

(11)

\[
\begin{align*}
\begin{cases}
 f(y) = \begin{cases}
 y + Q_2, & y < -Q_2 \\
 \sin(y), & -N_2 \leq y \leq Q_2, \\
 y - N_2, & y > N_2
 \end{cases}
\end{cases}
\end{align*}
\]

(12)
Where \(f(x) \) and \(f(y) \) respectively satisfy mapping (11) and mapping (12), and \(Q_1 = m_1\pi, Q_2 = m_2\pi, N_1 = m_3\pi, N_2 = m_4\pi, m_1, m_2, m_3, m_4 \in \mathbb{Z}^+ \). The Hamiltonian energy of system (10) is obtained as

\[
H(x) = \frac{1}{2}z^2 + w + \int f(y) \, dy + \int f(x) \, dx. \tag{13}
\]

To further explain the process of generating multi-scroll in system (10), set the initial value \((x, y, z, w) = (\frac{\pi}{2}, \frac{\pi}{2}, 1, 1)\). When \(Q_1 = Q_2 = 0, N_1 = N_2 = 2\pi \), a \(2 \times 2 \) grid type multi-scroll flow is shown in Fig. 5 (a). When \(Q_1 = Q_2 = 0, N_1 = 2\pi, N_2 = 4\pi \), a \(2 \times 3 \) grid type multi-scroll flow is shown in Fig. 5 (b). When \(Q_2 = Q_3 = 0, N_1 = N_2 = 2\pi \), a \(3 \times 2 \) grid type multi-scroll flow is shown in Fig. 5 (c). When \(Q_1 = Q_2 = 0, N_1 = N_2 = 4\pi \), a \(3 \times 3 \) grid type multi-scroll flow is shown in Fig. 5 (d).

In summary, it can be concluded that different grid type multi-scroll flows can be obtained by changing the values of \(Q_1, Q_2, N_1 \) and \(N_2 \) to change the Hamiltonian energy of the system (10), and both the direction and the number of scrolls is controllable.

4. Conclusion

In this paper, a new generalized conservative chaotic system with multi-scroll chaotic flows is found based on the corresponding Hamiltonian energy through the mechanical and energy analysis of the three-dimensional volumetric conservative chaotic system proposed by Vaidyanathan and Volos. The new system satisfies the conservation of volume and energy. At the same time, the feasibility and effectiveness of the method of constructing multi-scroll flows is verified by Lyapunov exponent spectrum and phase diagram, which provides a new method for the construction of multi-scroll flows and a new conservative chaotic model for chaos application.

References

Authors Introduction

Ms. Jingwen Liu
She is studying for a master's degree in electronic information at Tianjin University of Science and Technology.

Mr. Zhonggao Chen
He received the B.S. degree from Tianjin University of Science and Technology, Tianjin, China. And now she is a master course student. Her main research interests are research and circuit implementation of multi-scroll Hamiltonian energy conservative system.