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Abstract 

In our previous work, a matrix-based framework is proposed to tackle the problem of verifying strong detectability 

in the context of partially-observed nondeterministic discrete event systems (DESs). Two key concepts, namely, 

unobservable reach and detector, are redefined therein. Also, the dynamics of a detector, under the frameworks of 

the Boolean semi-tensor product of matrices, are converted equivalently into an algebraic representation. In this 

paper, we extend our previous work to other versions of detectability, including strong periodic detectability, weak 

detectability, and weak periodic detectability. Several necessary and sufficient conditions are derived for verifying 

aforementioned three types of detectability, respectively. Compared with the existing ones, the proposed 

methodology is easier to be implemented in software in the sense that it avoids the symbolic manipulations. Finally, 

an example is given to illustrate the theoretical results. 

Keywords: Discrete event systems, state estimation, detectability, semi-tensor product of matrices.

1. Introduction

State estimation is an important and interesting topic in 

systems and control theory, and has many applications. 

For instance, in medical systems, we need to know the 

disease stage of a patient. Yet in remote and distributed 

systems, one hopes generally that a central station to be 

able to determine the state of a remote system with 

limited communications. The state estimation problem 

has drawn considerable attentions in the context of 

discrete event systems (DESs)1-9. 

The problem of state estimation of DESs has been 

investigated widely in terms of detectability of DESs that 

are based on finite automata models, which says that 

whether or not one can know exactly the current and 

subsequent states of original system after a finite delay. 

The notion of detectability4 was initially proposed for the 

deterministic DESs, where four types of detectability, 

namely, strong (periodic) detectability and weak 

(periodic) detectability, were defined. Later on, the 

concepts of other types of detectability came up and have 

been further extended to other classes of systems by 

many others5-8. For instance, the problem of verifying 

detectability has been studied in the frameworks of 

nondeterministic DESs5,6 and stochastic DESs7, 

respectively. Recently, trajectory detectability8 of DESs 

has been investigated. Complexity of determining 

detectability9 for DESs has been studied. When the 

original system is not detectable, some approaches10,11 

have been developed to enforce provably detectability by 

synthesized optimal supervisor (if exists) that restricts the 

system’s behavior in a manner. 

In our previous work6, we developed a matrix-based 

approach to discuss strong state detectability of 
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nondeterministic DESs from a new angle.  A 

matrix-based verification criterion with polynomial 

complexity in the size of system for verifying strong 

detectability is derived. Strong detectability says that 

whether or not we can know precisely the current and 

subsequent states of original system after a finite number 

of delays. However, the goal may be too rigid in practice. 

In this regard, extending strong detectability to strong 

periodic detectability and/or weak (periodic) detectability 

could be necessary. Additionally, developing a novel 

matrix-based methodology to tackle simultaneously 

different types of detectability is still interesting. In this 

paper, we will solve aforementioned these problems. 

Notice that, although the study of detectability4,5 has 

been considered, our verification criterions are totally 

different from them. First, the proposed approach is 

matrix-algebra-based form by using a new tool, called the 

semi-tensor product (STP) of matrices12. While the 

existing ones are based on design of algorithms. Second, 

the proposed approach is easier to be implemented in 

softwares in the sense that all obtained results are 

numerically tractable instead of graph-based symbolic 

manipulations. 

The remainder of this paper is arranged as follows. 

Section 2 introduces some basic notations and concepts 

needed in this paper. Section 3 provides some 

matrix-based criterions to verify different types of 

detectability by means of the developed methodology. In 

Section 4, an example is presented to illustrate the 

application of the obtained results. Finally, we conclude 

the paper in Section 5. 

2. Preliminaries 

2.1. Notations  

|X| denotes the cardinality of set X. 𝕄𝑚×𝑛 denotes the 

set of 𝑚 × 𝑛  real matrices. 𝑀(𝑖,𝑗)  denotes the (i,j) 

element of matrix M. 𝐶𝑜𝑙𝑗(𝑀) denotes the j-th column 

of matrix M. 𝐶𝑜𝑙(𝑀) denotes the set of all columns of 

matrix M. A matrix B ∈ 𝕄m×n is a Boolean matrix if 

𝐵(𝑖,𝑗) ∈ 𝒟 = {0,1}, ∀ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 . We use 

𝐵𝑚×𝑛  to denote the set of 𝑚 × 𝑛  Boolean matrices. 

𝛿𝑛
0 ∶= [0, 0,⋯ , 0]𝑇 . 𝛿𝑛

𝑘 ∶= 𝐶𝑜𝑙𝑘(𝐼𝑛) , where 𝐼𝑛  is the 

identity matrix of dimension n, 1 ≤ 𝑘 ≤ 𝑛 . ∆𝑛∶=

{𝛿𝑛
1, 𝛿𝑛

2, ⋯ , 𝛿𝑛
𝑛} ; ∆̃𝑛∶= {𝛿𝑛

1, 𝛿𝑛
2, ⋯ , 𝛿𝑛

𝑛} . 𝐿 ∈ 𝕄𝑚×𝑛  is a 

generalized logical matrix if 𝐶𝑜𝑙(𝐿) ⊆ ∆̃𝑚.We denote 
the set of 𝑚 × 𝑛  generalized logical matrix by 

ℒ𝑚×𝑛 .  For brevity, 𝐿 ∈ ℒm×n  is denoted as 𝐿 =

𝛿𝑚[𝑖1, 𝑖2, ⋯ , 𝑖𝑛], 𝑖𝑘 ∈ {0,1,⋯ ,m}, 1 ≤ 𝑘 ≤ 𝑛. 

2.2. Semi-tensor product (STP) of matrices 

Definition 2.112 Let 𝐴 ∈  𝕄m×n  and 𝐵 ∈  𝕄p×q . The 

STP of A and B is defined as 

𝐴 ⋉ 𝐵 = (𝐴⨂𝐼𝑡 𝑛⁄ )(𝐵⨂𝐼𝑡/𝑝),         (1) 

where t denotes the least common multiple of n and p, 

i.e., t = lcm(n, p); ⨂ is the Kronecker product. 

Remark 2.1 When 𝑛 = 𝑝, 𝐴 ⋉ 𝐵 = 𝐴𝐵. Hence, the STP 

is a generalization of the standard matrix product. We 

mostly omit the symbol “⋉” hereinafter. 

Lemma 2.112 Let 𝑋 ∈ ℝ𝑚 𝑎𝑛𝑑 𝑌 ∈ ℝ𝑛 be two column 

vectors. Then 

𝑊[𝑚,𝑛]𝑋𝑌 = 𝑌𝑋,      𝑊[𝑚,𝑛]𝑌𝑋 = 𝑋𝑌.     (2) 

where 𝑊[𝑚,𝑛] = [𝛿𝑛
1𝛿𝑚

1 ,⋯ , 𝛿𝑛
n𝛿𝑚

1 , ⋯ , 𝛿𝑛
1𝛿𝑚

m, ⋯ , 𝛿𝑛
n𝛿𝑚

m]. 

Lemma 2.2 12 Let 𝛿𝑛1

𝑖1 𝛿𝑛2

𝑖2 = 𝛿𝑛1𝑛2

𝑖12 , then we have 𝑖12 =

(𝑖1 − 1)𝑛2 + 𝑖2. 

2.3. Boolean algebra 

Here we introduce some notations from the binary 
algebra of binary matrices (or called Boolean 
matrices) that will be used later on. 
Definition 2.213 Assume that 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 ∈ ℬ𝑚×𝑛, 𝐵 =

(𝑏𝑖𝑗)𝑚×𝑛 ∈ ℬ𝑚×𝑛. The Boolean addition of A and B is 

defined as  

A × 𝐵ℬ ∶= (𝑎𝑖𝑗⋁ 𝑏𝑖𝑗)𝑚×𝑛 ∈ ℬ𝑚×𝑛,    (3) 

where the symbol “ ⋁” is the logical operators OR. 

Definition 2.313 Assume that 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 ∈ ℬ𝑚×𝑛,

𝐵 = (𝑏𝑖𝑗)𝑛×𝑠 ∈ ℬ𝑛×𝑠. The Boolean product of A and B 

is defined as 

A × 𝐵ℬ ∶= 𝐶 = (𝑐𝑖𝑗)𝑚×𝑠 ∈ ℬ𝑚×𝑠,     (4) 

where 𝑐𝑖𝑗 = ⋁𝑘=1
𝑛 (𝑎𝑖𝑘⋀ 𝑏𝑘𝑗); the symbols “ ⋁” and  

“  ∧” denote the logical operators OR and AND, 

respectively. 

Definition 2.4 Assume that 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 ∈ ℬ𝑚×𝑛,

𝐵 = (𝑏𝑖𝑗)𝑝×𝑞 ∈ ℬ𝑝×𝑞 . The Boolean semi-tensor 

product of A and B is defined as 

A ⋉ 𝐵ℬ ∶ = (𝐴⨂𝐼𝑡 𝑛⁄ ) (𝐵⨂𝐼𝑡/𝑝)ℬ ,   (5) 

where t = lcm(n, p). 

Remark 2.2  From now on, the following all matrix 

product (resp., matrix addition) is assumed to be the 
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Boolean semi-tensor product (resp., Boolean addition) 

and the symbol “⋉ℬ” (resp., +ℬ ) will also be omitted 

hereinafter when there is no danger of confusion. 

2.4. System model 

The discrete event system (DES) of interest is modeled as 

a nondeterministic finite automaton (NFA) that is a 

five-tuple 𝐺 = (𝑋, 𝛴, 𝛿, 𝑋0, 𝑋𝑚), where 𝑋 is a finite set 

of states, 𝛴 is a finite set of events, 𝑋0 ⊆ 𝑋 is the set of 

initial states, 𝑋𝑚 ⊆ 𝑋 is the set of marked states (or 

accepted states), δ ∶ 𝑋 × 𝛴 → 2𝑋 is the partial transition 

function, which describes the system dynamics: given 

states 𝑥, 𝑦 ∈ 𝑋  and an event 𝜎 ∈ 𝛴，𝑦 ∈ 𝛿(𝑥, 𝜎) 

means that there is a transition labeled by event 𝜎 from 

state 𝑥 to state 𝑦. Note that 𝛿(𝑥, 𝜎) is undefined when 

the event 𝜎  cannot be executed at state 𝑥 . We use 

𝛿(𝑥, 𝜎)!  to denote that 𝛿(𝑥, 𝜎)  is well-defined. 

Obviously, the transition function can be extended to δ ∶

𝑋 × 𝛴∗ → 2𝑋 in the usual manner, where 𝛴∗ denotes the 

set of finite strings on the alphabet 𝛴 , including the 

empty string 𝜖. 

For brevity, we assume that 𝐺 = (𝑋, 𝛴, 𝛿, 𝑋0, 𝑋𝑚) is 

deadlock free (also called alive), i.e., for each state 𝑥 ∈ 𝑋, 

there is at least a corresponding event 𝜎 ∈ 𝛴 such that 

𝛿(𝑥, 𝜎)!. It should be pointed out that this assumption is 

without essential loss of generality, since it can be 

relaxed by adding observable self-loops at terminal states. 

When system G is partially observed, its event set is 

partitioned into two disjoint parts: the observable part 𝛴𝑜 

and the unobservable part 𝛴𝑢𝑜 , i.e., 𝛴𝑜⋃𝛴𝑢𝑜 = 𝛴 and 

𝛴𝑜⋂𝛴𝑢𝑜 = ∅ . The natural projection P:  𝛴∗ → 𝛴𝑜
∗  is 

defined by 

𝑃(𝜖) = 𝜖 𝑎𝑛𝑑 𝑃(𝑠𝜎) = {
𝑃(𝑠)𝜎,        𝑖𝑓𝜎 ∈ 𝛴𝑜;

𝑃(𝑠),         𝑖𝑓𝜎 ∈ 𝛴𝑢𝑜.  
      (6) 

3. Detectability of partially-observed DESs 

3.1. Problem statement 

In the paper, so-called state estimation is based on 

observations of some events and states. More explicitly, 

the event observation is described by the projection 

P: 𝛴∗ → 𝛴𝑜 
∗ , while the state observation is described by 

the output map ℎ ∶ 𝑋 → 𝑌  where 𝑌  denotes a finite 

output set. In this regard, a partially-observed 

nondeterministic DES with the event and state 

observations can be described as follows. 

𝐺𝑜 = (𝐺, 𝑃, ℎ, 𝛴𝑜 , 𝑌),             (7) 

where 𝐺 = (𝑋, 𝛴, 𝛿, 𝑋0, 𝑋𝑚). 

Consequently, the problem of state estimation of 

partially-observed DESs, under the framework of 

detectability, can be formalized as follows. Given a 

partially-observed nondeterministic DES (7), we do not 

know the set of initial states of system 𝐺𝑜, while we have 

partial event observations (i.e., 𝛴𝑜 ⊂ 𝛴) and some state 

observations (i.e., 𝑌 ≠ ∅). Whether we can know exactly 

the current and subsequent states of system (7) after a 

finite number of observations. Formally, we give the 

concepts of three types of detectability of system (7) 

below. 

Definition 3.1 A partially-observed nondeterministic 

DES (7) is said to be weakly detectable, if its current 

and subsequent states can be precisely determined by 

some admissible input-output strings after a finite 

number of observations. 

Definition 3.2 A partially-observed nondeterministic 

DES (7) is called strongly (resp., weakly) periodically 

detectable, if its current state can be periodically 

determined by all (resp., some) admissible input-output 

strings after a finite number of observations. 

3.2. Algebraic expression of detector 

To investigate aforesaid three types of detectability, our 

previous work6 defines the unobservable reach of a state 

𝑥 ∈ 𝑋 for partially-observed nondeterministic DES (7). 

Definition 3.3 Given a partially-observed 

nondeterministic DES (7), the unobservable reach of 

state 𝑥 ∈ 𝑋, denoted by 𝑈𝑅(𝑥), is defined as 

𝑈𝑅(𝑥) = {𝑥}⋃
{�̃� ∈ 𝑋 | ∃𝑒 ∈ 𝛴𝑢𝑜

∗  𝑠. 𝑡. �̃� ∈ 𝛿(𝑥, 𝑒)

 𝑎𝑛𝑑 ℎ(𝑥) = ℎ(�̃�)}
 (8) 

Intuitively, 𝑈𝑅(𝑥) represents the set of all states that 

are reachable from x through unobservable strings and 

they have the same output as state x. 

A detector6 that is a deterministic finite automaton, 

denoted by 𝐺𝑑𝑒𝑡 , is constructed for partially-observed 

nondeterministic DES (7). Formally, 

𝐺𝑑𝑒𝑡 = (�̃� , 𝛴𝑜 ∪ {∅} × 𝑌, 𝛿𝑑𝑒𝑡 , �̃�0),      (9) 

where the state set is �̃� ⊆ 2𝑋, 𝛴𝑜 ∪ {∅} × 𝑌 denotes the 

input-output set, 𝛿𝑑𝑒𝑡 is partial transition function, �̃�0 =

𝑋 is the initial state. 

To obtain the dynamics of detector (9), let us consider 

the partially-observed nondeterministic DES (7), where 

𝑋 = {𝑥1,  𝑥2, ⋯ , 𝑥𝑛}; the set of events, without loss of 

generality, is 𝛴 = 𝛴𝑜⋃𝛴𝑢𝑜  with 𝛴𝑜 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑠−1  } 

and 𝛴𝑢𝑜 = {𝑒𝑠, 𝑒𝑠+1, ⋯ , 𝑒𝑚  } ; the output set is 𝑌 =

103



Jinliang Wang, Jiawei Wei, Xiaoguang Han 

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022 

{𝑦1, 𝑦2, ⋯ , 𝑦𝑞  }. Identify 𝑥𝑖 (resp., 𝑒𝑗1  , 𝑒𝑗2  , 𝑦𝑘) with 𝛿𝑛
𝑖  

(resp., 𝛿𝑠
𝑗1 , 𝛿𝑠

𝑠 , 𝛿𝑞
𝑘 ) for simplicity, (1 ≤ 𝑖 ≤ 𝑛)  (resp., 

1 ≤ 𝑗1 ≤ 𝑠 − 1 ,  𝑠 ≤ 𝑗2 ≤ 𝑚 , 1 ≤ 𝑘 ≤ 𝑞 ). we call 𝛿𝑛
𝑖 , 

𝛿𝑠
𝑗
( 𝑗 = 𝑗1, 𝑠)  and 𝛿𝑞

𝑘  are the vector forms of 𝑥𝑖 , 

𝑒𝑗  ( 𝑗 = 𝑗1, 𝑗2) and 𝑦𝑘 , respectively. Thus 𝑋~∆𝑛, 𝛴~∆𝑠 

and 𝑌~∆𝑞. To this end, an admissible input-output pair 

(𝛿𝑠
𝑗
, 𝛿𝑞

𝑘) can be identified with 𝛿𝑠𝑞
𝑝

 by means of the 

formula 𝛿𝑠𝑞
𝑝

= 𝛿𝑠
𝑗
⋉ 𝛿𝑞

𝑘 given in Lemma 2.2. 

Next, we construct a matrix 𝐹𝑝 ∈ ℬ𝑛×𝑛 , called 

input-output transition structure matrix associated with 

the input-output pair (𝛿𝑠
𝑗
, 𝛿𝑞

𝑘), as follows. 

𝐹𝑝(𝑖,𝑡)

= {
1, 𝛿𝑛

𝑎 ∈ 𝛿(𝛿𝑛
𝑡 , 𝛿𝑠

𝑗
), 𝛿𝑛

𝑖 ∈ 𝑈𝑅(𝛿𝑛
𝑎), ℎ(𝛿𝑛

𝑎) = 𝛿𝑞
𝑘;  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(10) 

Further, the input-output transition structure matrix 

(abbreviated as IOTSM) associated with all admissible 

input-output pairs is defined as 

𝐹 = [𝐹1, 𝐹2, ⋯ , 𝐹𝑠𝑞] ∈ ℬ𝑛×𝑛𝑠𝑞.       (11) 

Proposition 3.1 Given a partially-observed 

nondeterministic DES (7), then the dynamics of detector 

(9) can be equivalently described by the following 

algebraic equation 

�̃�(𝑡 + 1) = 𝐹𝑢(𝑡)𝑦(𝑡) �̃�(𝑡),        (12) 

where the matrix 𝐹 defined in (11) is called the IOTSM 

of detector (9), �̃�(1) = [1,1,⋯ ,1]T is the initial state of 

detector (9), �̃�(𝑡) = (𝑥1(t), 𝑥2(t),⋯ , 𝑥𝑛(t)) T is the 

vector form of state of detector (9) at step t, whose 𝑖𝜏-th 

(𝜏 = 1,2,⋯ , 𝑘) entry equals to 1 means that the state of 

detector (9) at step t is {𝑥𝑖1 , 𝑥𝑖2 , ⋯ , 𝑥𝑖𝑘
}, 𝑢(𝑡)𝑦(𝑡) ∈ ∆𝑠𝑞 

is the vector form of input-output pair at step t. 

Using Lemma 2.1, we have 

�̃�(𝑡 + 1) = 𝐹𝑊[𝑛,𝑠𝑞]�̃�(𝑡)𝑢(𝑡)𝑦(𝑡) ,        (13) 

Define matrix �̃�[𝑡] =: (𝐹𝑊[𝑛,𝑠𝑞])
[𝑡]�̃�(1), then Eq.(13) 

becomes 

�̃�(𝑡 + 1) = �̃�[𝑡] ⋉𝑗=1
𝑡 𝑢( 𝑗)𝑦( 𝑗) .        (14) 

3.3. Verification of detectability 

Now, we further develop a matrix-based methodology in 

terms of Eq. (13) to verify three types of detectability for 

partially-observed nondeterministic DES (7). To this end, 

we need the following some preliminaries. 

Using Theorem 2 existed in other paper14 and Eq. (13) 

and/or (14), we can obtain easily the state set �̃�  of 

detector (9), and denote by �̃� = {𝑧1, 𝑧2, ⋯ , 𝑧𝑛} . 

Identifying 𝑧𝑖~𝜂𝑖, where 𝜂𝑖 is the vector form of state 

𝑧𝑖,1 ≤ 𝑖 ≤ 𝑁. Further, we construct that the vector 𝐴𝑝 ∈

ℬ𝑁×1(1 ≤ 𝑝 ≤ 𝑁) is as follows. 

𝐴𝑝(𝑖,𝑗) = {
1, 𝜂𝑖  ∈ 𝐶𝑜𝑙(𝐹𝑊[𝑛,𝑠𝑞])𝜂𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

(15) 

Intuitively, the matrix 𝐴 = [𝐴1, 𝐴2, ⋯ , 𝐴𝑁] ∈ ℬ𝑁×𝑁  is 

the adjacency matrix of the state transition diagram of the 

detector (9). 

On the other hand, we call a state 𝑧 ∈ �̃� a single state 

if |𝑧| = 1  and denote by 𝑋𝑠𝑖𝑛𝑔𝑙𝑒 = {𝑧 ∈ �̃�| |𝑧| = 1} . 

Let 𝑋𝑠𝑖𝑛𝑔𝑙𝑒 = {𝑧𝑖1 , 𝑧𝑖2 , ⋯ , 𝑧𝑖𝑤} . 𝜈 = {𝑖1, 𝑖2, ⋯ , 𝑖𝑤  } is 

said to be the subscript set of 𝑋𝑠𝑖𝑛𝑔𝑙𝑒 . 

The following results provide the matrix-based criteria 

of verifying aforesaid four types of detectability for 

partially-observed nondeterministic DES (7). 

Theorem 3.1 A partially-observed nondeterministic 

DES (7) is weakly detectable if and only if 

{𝜎|(∑𝑘=1
𝜔 (𝑃𝑇𝐴𝑃)𝐾)(𝜎,𝜎) = 1} ≠ ∅     (16) 

where 𝑃 = 𝛿𝑁[𝑖1, 𝑖2, ⋯ , 𝑖𝑤]. 

Proof. Since 𝜈 = {𝑖1, 𝑖2, ⋯ , 𝑖𝑤  } is the subscript set of 

the set of single states 𝑋𝑠𝑖𝑛𝑔𝑙𝑒 , then (16) holds if and 

only if there exists at least a loop in 𝐺𝑑𝑒𝑡  in which all 

states belongs to 𝑋𝑠𝑖𝑛𝑔𝑙𝑒 . This means that there exists at 

least an admissible infinite input-output string by which 

the current and subsequent states of system (7) can be 

know exactly after a finite delay. Therefore, by 

Definition 3.1, system (7) is weakly detectable if and 

only if (16) holds. 

Theorem 3.2 A partially-observed nondeterministic 

DES (7) is strongly periodically detectable if and only if 

{𝜎|(∑𝑘=1
𝑁−𝜔(𝑄𝑇𝐴𝑄)𝐾)(𝜎,𝜎) = 1} = ∅     (17) 

where 𝑄 = 𝛿𝑁[1,⋯ , 𝑖1 − 1, 𝑖1 + 1,⋯ 𝑖𝜔 − 1, 𝑖𝜔 + 1,⋯, 

𝑁]. 
Proof. We know that (17) holds if and only if there is no 

loop of all states belong to �̃�/𝑋𝑠𝑖𝑛𝑔𝑙𝑒  in 𝐺𝑑𝑒𝑡 . This 

implies that we determine periodically the current state of 

system (7) for all admissible input-output strings after a 

finite number of delays. Consequently, by Definition 3.2, 

(17) holds if and only if system (7) is strongly 

periodically detectable. 

Theorem 3.3 A partially-observed nondeterministic 

DES (7) is weakly periodically detectable if and only if 

{𝜎|(∑𝑘=1
𝑁 𝐴𝐾)(𝜎,𝜎) = 1} ∩ 𝑣 ≠ ∅     (18) 

Proof. The proof of Theorem 3.3 follow directly from 

Definition 3.2 and Theorem 3.1, here we omit it. 

Remark 3.1 Consider a partially-observed 

nondeterministic DES (8) with 𝑛  state nodes, 𝑠 − 1 
observable event nodes and 𝑞 output nodes. In other 

paper9, author proved that there exists no polynomial 

algorithm for verifying weak (periodic) detectability 

unless 𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸 . In our paper, since the size of 
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matrix 𝐹  in (12) is 𝑛 × 𝑛𝑠𝑞 , the complexity of 

constructing the matrix-based detector (12) is O(𝑛2𝑠𝑞), 
which is polynomial with respect to the size of system (7). 
On the other hand, in the worst case, the cardinality of the 

state set �̃�  of detector 𝐺𝑑𝑒𝑡  is 2𝑛 . Therefore, the 

complexity of constructing matrix A is O(2𝑛 × 2𝑛) , 

which is exponential with respect to the size �̃�. Overall, 

the total complexity of implementing Theorems 3.1-3.3 

to verify aforementioned three types of detectability is 

O(𝑛2𝑠𝑞 + 22𝑛). 

Remark 3.2 A Matlab toolbox on the numerical 

computation of the STP of matrices has been created at 

http://lsc.amss.ac.cn/~dcheng/stp/STP .zip. In this paper, 

the implementation of the following an example is based 

on this Matlab toolbox. 

4. Illustrative example 

4.1.  Example 4.1  

Consider a partially-observed DES shown in Fig.1, where 

𝑒3 ∈ 𝛴𝑢𝑜. 

 
Fig.1 A partially-observed DES with output observations 

Identifying 𝑥𝑖~𝛿4
𝑖  (1 ≤ 𝑖 ≤ 4) , 𝑒𝑗~𝛿4

𝑗
 (1 ≤ 𝑗 ≤ 4) , 

𝑘~𝛿3
𝑘 (1 ≤ 𝑘 ≤ 3) . Using Eq. (8), we obtain that 

𝑈𝑅(𝑥𝑖) = {𝑥𝑖}, 𝑖 = 1,2,3,4.  By Proposition 3.1, we 

obtain that the dynamics of detector 𝐺𝑑𝑒𝑡  

�̃�(𝑡 + 1) = 𝐹𝑢(𝑡)𝑦(𝑡) �̃�(𝑡).         (19) 

Using Lemma 2.1, Eq.(19) becomes  

�̃�(𝑡 + 1) = 𝐹𝑊[4,12]�̃�(𝑡)𝑢(𝑡)𝑦(𝑡) ,      (20) 

where 𝐹 = [𝐹1, 𝐹2, ⋯ , 𝐹11, 𝐹12] with  𝐹𝑖 = 04×4(𝑖 =
1,5,6,7,9,11), 𝐹2 = 𝛿4[0,4,0,0], 𝐹3 = 𝛿4[3,0,0,0], 𝐹8 =
𝛿4[0,0,4,0], 𝐹12 = 𝛿4[0,0,0,3], 

𝐹4 = [

0 0 1 0
0
0
0

0
0
0

1
0
0

1
0
0

] , 𝐹10 = [

0 0 1 0
0
0
0

0
0
0

1
0
0

0
0
0

] . We can 

obtain further that �̃� = {𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5}, where  𝑧1 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4} , 𝑧2 = 𝑥2 , 𝑧3 = 𝑥3 , 𝑧4 = 𝑥4 , 𝑧5 =
{𝑥1, 𝑥2}, 𝑋𝑠𝑖𝑛𝑔𝑙𝑒 ={𝑧2, 𝑧3, 𝑧4}, 𝜈 = {2,3,4}, 

𝐴 =

[
 
 
 
 
0
0
1

0
0
0

0
0
0

0
1
1

0
0
1

1
1

1
0

1
1

0
0

1
0]
 
 
 
 

 , 

{𝜎|(∑𝑘=1
5 𝐴𝐾)(𝜎,𝜎) = 1} = {2,3,4,5} ∩ 𝑣 ≠ ∅, 

{𝜎|(∑𝑘=1
3 (𝑃𝑇𝐴𝑃)𝐾)(𝜎,𝜎) = 1} = {1,2,3} ≠ ∅,𝑤ℎ𝑒𝑟𝑒 𝑃 =

𝛿5[2,3,4], 

{𝜎|(∑𝑘=1
2 (𝑄𝑇𝐴𝑄)𝐾)(𝜎,𝜎) = 1} = ∅,𝑤ℎ𝑒𝑟𝑒 𝑄 = 𝛿5[1,5]. 

By Theorems 3.1-3.3, the system shown in Fig.1 is 

strongly periodic detectable and weakly (periodic) 

detectable. 

5. Conclusion 

In this paper, we developed a matrix-based methodology 

to verify various types of detectability for 

partially-observed nondeterministic DESs. By resorting 

to our previous work 6, several matrix-based criterions for 

verifying three types of detectability were derived. These 

verification criterions all of are based on closed-forms 

The proposed methodology in this paper is only 

viewed as a start of the related issues for 

partially-observed DESs, it may be provide a new 

theoretical framework for verifying and synthesizing of 

other types of system-theoretic property. For instance, 

extending the developed methodology to trajectory 

detectability8 for partially-observed DESs modeled by 

finite automata (resp., Petri nets15) is an interesting 

direction. 
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