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Abstract 

Roller arrangement problem is a sphere conveyance problem of driving rollers.  In this research, 

the roller arrangement problem, viewed as an evaluation function, is thought of as mean of roller 

kinetic energy with respect to the sphere direction. Furthermore, theoretically , we derive the 

function, and find the contact point such that the evaluated value is minimal. 

Keywords: Omnidirectional movement, Angular velocity vector of the sphere, Kinetic energy of the sphere

1. Introduction

    A sphere, one of the basic shapes of robots, is used 

not only as a multi-fingered fingertip mechanism for 

hand robots but also as an actuator transmission 

mechanism for omnidirectional movement and drive 

in mobile robots. Spheres are also used as driving 

rollers for omnidirectional movement mechanisms, 

and there are various arrangements, depending on the 

application of the movement mechanism. 

 Figure 1 shows the roller contact type for the 

number of actuators(𝑁𝑤) per sphere.

   Examples of mechanisms driven by two rollers 

include a power transmission mechanism by Wada et 

al. [1] (see Figure 1(a)), a mobile device using 

Miyamoto's ball [2] (see Figure 1(b)), and. The 

abovementioned mechanisms can be used for the 

roller of a wheelchair. In the roller arrangement, a 

roller fixed in advance is performed on the equator 

parallel to the horizontal plane, and the sphere can be 

rotated in two degrees of freedom by generating an 

angular velocity vector on the plane by Kimura [3]. 

   The ball holding mechanism [4] (see Figure 1(c)) is 

intended to transport the ball, and the roller is placed 

in the upper hemisphere to hold the ball by friction.  

Here, roller arrangement problem is considered a 

sphere conveyance problem by driving rollers. 

Figure 1   Type of roller arrangement for sphere mobile robot 
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In this research, in the case of omnidirectional 

movement, we define an evaluation function as mean 

of roller’s kinetic energy with respect to sphere 

direction angle, and we also derive the exact formula. 

Furthermore, theoretically, we find the contact point 

such that the evaluated value (mean of roller’s kinetic 

energy) is minimal. Additionally, we perform 

simulation and present energy distribution of several 

contact points on a sphere. 

2. Derivation of theoretical evaluation function

In this chapter, we calculate the omnidirectional

energy integral of the driving rollers.  

As shown in Figure 2, The center 𝑶 of a sphere with 

radius r is fixed as the origin of the coordinate system 

𝛴 − 𝑥𝑦𝑧. The 𝑖th constraint roller (i = 1 or 2) is in point

contact with the sphere at a position vector 𝑷𝒊 (𝑷𝟏 ≠ 𝑷𝟐).

𝝎 denotes the angular velocity vector of the sphere . 

Because of 𝜼𝟏, 𝜼𝟐 ∈ 𝐬𝐩𝐚𝐧{𝑷𝟏, 𝑷𝟐} (omnidirectional

condition), 𝝎  is on span{𝑷𝟏, 𝑷𝟐  . sphere direction 𝜑

(0° ≤ 𝜑 < 360°) is the angle from 𝑥 -axis and 𝜌 is the 

angle from 𝑥𝑦 -plane to 𝝎  . Now, given the sphere 

mobile velocity 𝑽 (the center velocity of sphere). 

2.1 Kinetic energy of the roller  

Consider two rollers (right cylinder) with radius 𝑅, mass 

𝑀, moment of inertia 𝐼, and roller’s angular velocity 𝜔𝑖 .

The total kinetic energy of the rollers is given by Eq. (1). 

𝐸 =  𝐼(𝜔1
2 + 𝜔2

2) (1)

 =
𝑀

2
(‖𝝎 × 𝑷1‖2 + ‖𝝎 × 𝑷2‖2)

2.2 Mean of kinetic energy of rollers 

To evaluate the value for roller arrangement, we 

define the follows expressions. Eq. (2) presents the 

mean of kinetic energy by integrating the total kinetic 

energy of the rollers with respect to the direction 𝜑 

(0° ≤ 𝜑 ≤ 360°). 

𝐸𝑀 =
1

2𝜋
∫ 𝐸 𝑑𝜑

2𝜋

0

 (2) 

(i) Case of arbitrary arrangement 

Quoting Equation (12) of Paper [5] (Kimura) as 

follows:  

‖𝝎 × 𝑷1‖2 + ‖𝝎 × 𝑷2‖2 (3) 

= (‖𝒆𝟑 × 𝑷1‖2 + ‖𝒆𝟑 × 𝑷2‖2)𝜔𝑧
2 

+ 2(〈�́� × 𝑷1, 𝒆𝟑 × 𝑷1〉 + 〈�́� × 𝑷2, 𝒆𝟑 × 𝑷2〉)𝜔𝑧

+ ‖�́� × 𝑷1‖2 + ‖�́� × 𝑷2‖2

Figure 2   The sphere rotational motion by driving rollers

at 𝑷𝒊.

where 

𝑷𝒊 = 𝑟[cos𝜃𝑖,1 cos 𝜃𝑖,2 , sin 𝜃𝑖,1 cos 𝜃𝑖,2 , sin 𝜃𝑖,2]
𝑇

(4) 

𝒆𝟑 = [0, 0, 1]𝑇, �́� = [𝜔𝑥 , 𝜔𝑦 , 0]
𝑇
, 𝜔𝑧 = ‖𝑽‖ tan 𝜌 /𝑟

Using  𝑷𝑖 = [𝑃𝑖,𝑥 , 𝑃𝑖,𝑦 , 𝑃𝑖,𝑧  ]
𝑇

,  𝒆𝟑 × 𝑷𝑖 , �́� × 𝑷1  are

represented as follow. 

𝒆𝟑 × 𝑷𝑖 = [−𝑃𝑖,𝑦 , 𝑃𝑖,𝑥 ,0  ]
𝑇 (5) 

�́� × 𝑷𝑖 = [𝜔𝑦𝑃𝑖,𝑧 , 𝜔𝑥𝑃𝑖,𝑧 , 𝜔𝑥𝑃𝑖,𝑦 − 𝜔𝑦𝑃𝑖,𝑥 ]
𝑇 (6) 

Using Eqs. (5), ‖𝒆𝟑 × 𝑷𝑖‖
2 is calculated in teams of

𝑷𝑖 = [𝑃𝑖,𝑥  , 𝑃𝑖,𝑦 , 𝑃𝑖,𝑧  ]
𝑇
.

‖𝒆𝟑 × 𝑷1‖2 + ‖𝒆𝟑 × 𝑷2‖2 (7) 

= 𝑃1,𝑥
2 + 𝑃1,𝑦

2 + 𝑃2,𝑥
2 + 𝑃2,𝑦

2 = 2𝑟2 − 𝑃1,𝑧
2 − 𝑃2,𝑧

2  

Using Eqs. (5) and Eqs. (6), 

〈�́� × 𝑷1, 𝒆𝟑 × 𝑷1〉 + 〈�́� × 𝑷2, 𝒆𝟑 × 𝑷2〉 (8) 

 = −
‖𝑉‖

𝑟
{(𝑃1,𝑥𝑃1,𝑦 + 𝑃2,𝑥𝑃2,𝑧) sin 𝜑

 +(𝑃1,𝑦𝑃1,𝑧 + 𝑃2,𝑦𝑃2,𝑧) cos 𝜑}

Using Eqs. (6), 

‖�́� × 𝑷1‖2 + ‖�́� × 𝑷2‖2 = 
‖𝑉‖2

𝑟2 {𝑃1,𝑧
2 + 𝑃2,𝑧

2

+(𝑃1,𝑦
2 + 𝑃2,𝑦

2 ) sin2 𝜑+(𝑃1,𝑥
2 + 𝑃2,𝑥

2 ) cos2 𝜑

 +2(𝑃1,𝑥 𝑃1,𝑦 + 𝑃2,𝑥𝑃2,𝑦)sin 𝜑 cos 𝜑} (9)

Thus. By substituting Eqs. (7), Eqs. (8) and Eqs. (9) for 

Eqs.  (3), It can be represented in  teams of  𝑃𝑖,𝑥 ,

𝑃𝑖,𝑦 , 𝑃𝑖,𝑧.

Here, using expressions, 
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1

2𝜋
∫ sin2 𝜑 𝑑𝜑

2𝜋

0

= ∫ cos2 𝜑 𝑑𝜑
2𝜋

0

=
1

2
(10) 

1

2𝜋
∫ sin 𝜑 cos 𝜑 𝑑𝜑

2𝜋

0

= 0 

 Integral of  Eqs. (8) and Eqs. (9) by 𝜑(0° ≤ 𝜑 ≤ 360°) 

will be calculated as follow. 

∫ (〈�́� × 𝑷1, 𝒆𝟑 × 𝑷1〉
2𝜋

0

+ 〈�́� × 𝑷2, 𝒆𝟑 × 𝑷2〉)𝜔𝑧𝑑𝜑

(11) 

= 𝜋
‖𝑉‖2

𝑟2

1

𝑃1,𝑥𝑃2,𝑦−𝑃1,𝑦𝑃2,𝑥
{ 

(𝑃1,𝑥𝑃1,𝑧 + 𝑃2,𝑥𝑃2,𝑧)( 𝑃1,𝑦𝑃2,𝑧 − 𝑃2,𝑦𝑃1,𝑧) +

 (𝑃1,𝑦𝑃1,𝑧 + 𝑃2,𝑦𝑃2,𝑧)(𝑃1,𝑧𝑃2,𝑥 − 𝑃1,𝑥𝑃2,𝑧)}

∫ ‖�́� × 𝑷1‖2  +  ‖�́� × 𝑷2‖2 𝑑𝜑
2𝜋

0

(12) 

= 𝜋
‖𝑉‖2

𝑟2 (2𝑃1,𝑧
2 + 2𝑃2,𝑧

2 + 𝑃1,𝑥
2 +𝑃1,𝑦

2 + 𝑃2,𝑥
2 +𝑃2,𝑦

2 )

= 𝜋
‖𝑉‖2

𝑟2 (2𝑟2 + 𝑃1,𝑧
2 + 𝑃2,𝑧

2 )

By substituting Eqs. (3),(7), (11) and (12) into Eq. (1), 

𝐸𝑀 can be represented as

4𝑟2

𝑀‖𝑉‖2
𝐸𝑀 =

2𝑟2 − 𝑃1,𝑧
2 − 𝑃2,𝑧

2

(𝑃1,𝑥𝑃2,𝑦 − 𝑃1,𝑦𝑃2,𝑥)
2 {(𝑃1,𝑦𝑃2,𝑧 − 𝑃2,𝑦𝑃1,𝑧)

2

+(𝑃1,𝑧𝑃2,𝑥 − 𝑃1,𝑥𝑃2,𝑧)
2

} +
2

𝑃1,𝑥𝑃2,𝑦 − 𝑃1,𝑦𝑃2,𝑥

{ 

(𝑃1,𝑥𝑃1,𝑧 + 𝑃2,𝑥𝑃2,𝑧)(𝑃1,𝑦𝑃2,𝑧 − 𝑃2,𝑦𝑃1,𝑧) + (𝑃1,𝑦𝑃1,𝑧 +

𝑃2,𝑦𝑃2,𝑧)(𝑃1,𝑧𝑃2,𝑥 − 𝑃1,𝑥𝑃2,𝑧)} + 2𝑟2 + 𝑃1,𝑧
2 +𝑃2,𝑧

2  (13)

By theoretical calculation, we get the following 

properties. 

[Property 1]: Optimality of the evaluated value 

If (𝜃1,2, 𝜃2,2) = (0, 0) (𝑷1  and 𝑷2  are on the equator),

𝐸𝑀 takes the minimal value 𝑀‖𝑉‖2/2.

Method of proof  is follow. Using inequality 

(𝑥2 + 𝑦2)(2𝑟2 − 𝑥2 − 𝑦2)

≥  (𝑝𝑥 + 𝛼𝑦)2 + (𝑞𝑥 + 𝛽𝑦)2   (14)

, AM-GM inequality and Cauchy-Schwarz inequality, 

[Property1] is proved. 

Figure 3  The distribution of contact points on the upper 

hemisphere. (a) Isometric view. (b) Right overhead view. 

Table 1  The distribution of energy function 𝐸𝑀(𝜃1, 𝜃2) in 
 the upper hemisphere. 

80° 32.19 29.40 25.12 19.87 14.29 9.04 4.76 1.97 

70° 8.32 7.67 6.66 5.43 4.12 2.89 1.88 1.23 

60° 3.91 3.65 3.25 2.76 2.24 1.75 1.35 1.09 

50° 2.38 2.25 2.07 1.83 1.59 1.36 1.17 1.04 

40° 1.68 1.62 1.53 1.41 1.29 1.18 1.08 1.02 

30° 1.32 1.29 1.25 1.20 1.14 1.08 1.04 1.01 

20° 1.13 1.12 1.10 1.08 1.05 1.03 1.02 1.00 

10° 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 

0° 1 1 1 1 1 1 1 1 

𝜃2, 𝜃1 10° 20° 30° 40° 50° 60° 70° 80° 

(ii) Case of symmetry arrangement 

Especially, in case of symmetry arrangement ( 𝑃1,𝑥 =

−𝑃2,𝑥, 𝑃1,𝑦 = 𝑃2,𝑦, 𝑃1,𝑧 = 𝑃2,𝑧 ), using (𝜃1, 𝜃2) =

(𝜃1,1, 𝜃1,2) , (𝜃2,1, 𝜃2,2) . Eq. (13) is represented as

follow.  

𝐸𝑀(𝜃1, 𝜃2) =
𝑀‖𝑉‖2

4𝑟2 {2𝑟2 − 2𝑃1,𝑧
2 +

2𝑃1,𝑧
2 (𝑟2 − 𝑃1,𝑧

2 )

𝑃1,𝑦
2 } 

 =  
𝑀‖𝑉‖2

2

(1 − cos2 𝜃1 cos2 𝜃2)

sin2 𝜃1

(0° < 𝜃1 < 90°, 0° ≤ 𝜃2 < 90°)

(15) 

By theoretical calculation, we prove the following fact. 

[Property 2]: Monotonicity of 𝐸𝑀(𝜃1 , 𝜃2). 

(i) When 𝜃1 increases, 𝐸𝑀(𝜃1, 𝜃2) also decrease.

(ii) When 𝜃2 increases, 𝐸𝑀(𝜃1, 𝜃2) also increase.

3. simulation of Evaluation value on sphere

This section presents the simulation results 𝐸𝑀(𝜃1, 𝜃2)

(Eq.(15)), with 0° < 𝜃1 <  90° , 0° ≤ 𝜃2 <  90° ,

‖𝑽‖ = 1 [m/s], 𝑀 = 2, and 𝑟 = 1. 

   Figure 3 shows the contact points on the upper 

hemisphere. Table 1 shows the distribution of 𝐸𝑀(𝜃1 , 𝜃2) 

376



Kenji Kimura, Yusuke Abematsu, Hiroyasu Hirai, Kazuo Ishii 

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

at the contact points on the upper hemisphere in steps of 

𝜃1 (0° < 𝜃1 < 90°) and 𝜃2 (0° ≤ 𝜃2 < 90°).

As shown in Table 1, the value increases from the 

lower left of the table to the right and upward 

correspondingly [Property2]. 𝐸𝑀(𝜃1, 𝜃2)  diverges 

infinitely as it approaches (𝜃1, 𝜃2) = (90°, 0°) . In

particular, when 𝜃2 = 0 , 𝐸𝑀(𝜃1 , 𝜃2)  is constant

regardless of the contact position.  

 As shown in [1] and [2], when two constraint 

rollers are placed on the equator, the evaluation value 

is constant regardless of the angle of the two position 

vectors (see [Property 1]). 

   In the ball holding mechanism (evaluation of the 

placement of the world team) [4], the roller 

arrangement is on the upper hemisphere for ball 

transportation, but it is less-energy efficient than on 

the equator. Since the ball is not fixed by a pole caster, 

it is required to be placed on the upper hemisphere.  

4. Conclusion

In this research, we defined an evaluation function 

as mean of roller’s kinetic energy with respect to 

sphere direction angle and derived the exact formula. 

Furthermore, theoretically, we proved that points on 

equator are minimal. 

   Future issues include consideration of motion related to 

variable mechanisms with offset. 
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