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Abstract 

We have developed the fall risk notification system using LiDAR sensors to reduce number of fall accidents on 

platform involving visually impaired people. In this paper, we report the experiment results of the environment 

recognition algorithm for the fall risk notification system. In this algorithm, height grid map is generated from the 

depth image from LiDAR sensor and the posture of iPhone. In the experiment, we evaluated the accuracy and 

responsivity when approaching risky area of falling, such as stairs. 
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1. Introduction

Fall Accidents from station platforms are a serious 

problem in the daily mobility of the visually impaired 

people. According to statistics1 from the Ministry of 

Land, Infrastructure, Transport and Tourism, an average 

of 76 fall accidents occurs every year, indicating that the 

number of fall accidents is not small.  

To cope with these problems, research and 

development of devices called electronic walking aids, 

which convey sensor information in a non-visual way, 

has been promoted. In recent, smartphones have become 

a main part of aids, and some have been developed to 

help people get in line2 and navigate to their destinations3. 

However, there are few examples of applications that 

notify the user of the fall risk. 

The overview of the electronic walking aid developed 

in this study is shown in Fig. 1. iPhone 12 Pro processes 

information about the surrounding environment, and 

when a warning is needed, it sends a command to the 

control unit, which vibrates the vibrating device and 

transmits the information to the user. In this paper, we 

evaluate the performance of the fall risk notification 

system using the depth information from LiDAR sensor 

on the iPhone 12 Pro when the user approaches a risky 

area of falling. 

Fig.  1  Overview of the electronic travel aid 
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2. Methods 

2.1. System Usage Conditions 

This system assumes the usage conditions that the iPhone 

is tilted by an angle 𝜃 and mounted in front of the chest 

as shown in Fig. 2. Assuming that the height to the user's 

chest is 𝐻chest  and the length from the bottom of the 

iPhone to the camera unit is 𝑙camera, the height from the 

iPhone to the road surface 𝐻road is calculated by Eq. (1). 

𝐻road  = 𝐻chest  +  𝑙camera cos 𝜃             (1) 

2.2. Algorithm of Fall Risk Estimation 

This algorithm calculates the risk of falling, the overview 

shown in Fig. 3. This risk calculates from the minimum 

distance from the user to a risky area, such as a stair or a 

gap, and the occupancy of risky area in the user's close 

range. The details of each step are shown below.  

2.2.1. Conversion from Depth Image to Point Cloud  

3D points  𝒑𝑢,𝑣  calculate from the depth 𝑑𝑢,𝑣  obtained 

from the LiDAR sensor (u, v are coordinates on the depth 

image) and the intrinsics of the LiDAR sensor (𝑓𝑢, 𝑓𝑣, 𝑐𝑢, 

𝑐𝑣) as shown in Eq. (2). 

𝒑𝑢,𝑣 = [
𝑥
𝑦
𝑧
] =

[
 
 
 

𝑑𝑢,𝑣
𝑢−𝑐𝑢

𝑓𝑢

−
𝑣−𝑐𝑣

𝑓𝑣 ]
 
 
 

                           (2) 

2.2.2. Coordinate Transformation by Rotation 

This method does the coordinate transformation for the 

points 𝒑 (camera coordinates) to 𝑷, the axis indicating 

the height direction (𝑍-axis) is in the reverse direction of 

the gravity direction. this coordinate transformation as 

shown in Eq. (3) use the quaternion 𝒒 , which is 

calculated from the Roll angle and Pitch angle of the 

iPhone. So that the point 𝒑𝑢,𝑣 and 𝑷𝑢,𝑣 is set to 𝒑𝑢,𝑣 = [0, 

𝑥, 𝑦, 𝑧],  𝑷𝑢,𝑣 = [0, 𝑋, 𝑌, 𝑍] in Eq. (3). 

𝑷𝑢,𝑣 = 𝒒𝒑𝑢,𝑣𝒒
−1                          (3) 

2.2.3. Conversion from Point Cloud to Grid Map 

The points 𝑷  is transformed into the height grid map 

based on the coordinates in Section 2.1.2 due to reduce 

the noise in the points and simplify the calculation. The 

grid stores the points which their 𝑋 -axis and 𝑌 -axis 

position is inside of the grid range. The height ℎ𝑋,𝑌 (𝑋 

and 𝑌 are coordinates on the grid map) in each grid is 

calculated from the height ( 𝑍-axis position) of the stored 

point 𝑷 and the number of stored points 𝑛 as shown in Ep. 

(4). 

ℎ𝑋,𝑌 =
∑ 𝑍𝑘

𝑛
𝑘=1

𝑛
                               (4) 

2.2.4. Labeled Grid Map Generation 

This method generates the labeled grid map by threshold 

process in order to each grid classify safe and risky areas 

as shown in Eq. (5). 𝐿𝑋,𝑌 is the label of each grid. ℎth is 

tolerance of threshold. 

𝐿𝑋,𝑌 = {
S𝑎𝑓𝑒 𝐴𝑟𝑒𝑎      𝑖𝑓 ℎ𝑋,𝑌 ≥ 𝐻road − ℎth,

𝑅𝑖𝑠𝑘𝑦 𝐴𝑟𝑒𝑎    𝑖𝑓 ℎ𝑋,𝑌 < 𝐻road − ℎth.
     (5) 

2.2.5. Minimum Distance Estimation from Edge 

In this method, the labels of the grid are examined along 

the depth direction (𝑋-axis direction in the grid map) in 

the grid map, and the edge is defined as the point where 

the label changes from safe area to risky area. The 

minimum distance from the edge is calculated by Eq. (6) 

to the row with the least number of grids to the edge. 

𝑛𝑚𝑖𝑛 is the least number of grids to the edge, ∆𝐷 is the 

grid width. 

𝐷𝑚𝑖𝑛 = ∆𝐷 ∙ 𝑛𝑚𝑖𝑛                          (6) 

                                          

                                       

                            
                 

             

                                   

                                                                   

                    

                           

Fig.  3  Overview of fall risk estimation algorithm 

Fig.  2  Mounting position of iPhone 
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2.2.6. Occupancy Estimation of Risky Area 

This method calculates the occupancy of the risky area 

𝑂𝑟𝑖𝑠𝑘𝑦  and the occupancy of the safe area 𝑂𝑠𝑎𝑓𝑒  in the 

user's close range by Eq. (7) and (8). 𝑛𝑟𝑖𝑠𝑘𝑦 and 𝑛𝑠𝑎𝑓𝑒 are 

the number of grids labeled risky area and safe area in 

closed range. 𝑛𝑐𝑙𝑜𝑠𝑒 is number of grids in closed range. 

𝑂𝑟𝑖𝑠𝑘𝑦 = 𝑛𝑟𝑖𝑠𝑘𝑦 / 𝑛𝑐𝑙𝑜𝑠𝑒                         (7) 

𝑂𝑠𝑎𝑓𝑒 = 𝑛𝑠𝑎𝑓𝑒  / 𝑛𝑐𝑙𝑜𝑠𝑒                           (8) 

2.2.7. Fall Risk Estimation 

The fall risk level is calculated by the minimum distance 

from the edge and the occupancy of the risky area. The 

level is classified into three levels as shown below. 

𝐷𝑐𝑙𝑜𝑠𝑒 and 𝐷𝑓𝑎𝑟 are distance thresholds. 

 

• High level: 𝐷𝑚𝑖𝑛 < 𝐷𝑐𝑙𝑜𝑠𝑒 or 𝑂𝑟𝑖𝑠𝑘𝑦 > 𝑂𝑠𝑎𝑓𝑒  

• Medium level: 𝐷𝑚𝑖𝑛  >  𝐷𝑐𝑙𝑜𝑠𝑒  and 𝑂𝑟𝑖𝑠𝑘𝑦 < 𝑂𝑠𝑎𝑓𝑒  

• Low level: 𝐷𝑚𝑖𝑛 > 𝐷𝑓𝑎𝑟  and 𝑂𝑟𝑖𝑠𝑘𝑦 < 𝑂𝑠𝑎𝑓𝑒  

 

In medium level, add some distance thresholds to be able 

to notify finely when the minimum distance is updated. 

2.3. Experiment on Risky Area of Fall 

We did the experiment of the system when entering an 

area where there is a risk of falling. This experiment was 

done for evaluation the accuracy of the estimation of the 

minimum distance and the responsivity of the 

notification. The details are as follows. 

2.3.1. Procedure 

The task of this experiment was for the user to wear the 

device and walked straight to the goal as shown in Fig. 4. 

The conditions are as follows. 

 

(i) Approach angle: 90[deg] 

(ii) Approach angle: 45[deg] 

 

Condition (i) was assumed that users are getting on and 

off the train, and condition (ii) was assumed that user are 

moving along the platform and approaching the edge of 

the platform. 

The data to be collected during the experiment were 

depth images, attitude and self-position from iPhone. 

2.3.2. Device Setting 

The iPhone was fixed to the front of the user's chest with 

a harness-type fixture. The iPhone was also tilted forward 

30[deg] on the fixture. 

2.3.3. Experiment Place 

This experiment was done on the outdoor at the 

Wakamatsu campus of Kyushu Institute of Technology. 

As shown in Fig. 5, this place had a flat surface with a 

wide stair (Height of step: 0.14[m], Depth of step: 

0.34[m]). 

2.3.4. Analysis Method 

The analysis for evaluation were done on the accuracy of 

the minimum distance and the responsivity of the fall risk 

notification. For the accuracy of the minimum distance, 

the error was calculated as the difference between the 

distance between the start point and the goal point and 

the distance calculated from the iPhone's self-position 

and approach angle. The responsivity of the fall risk 

notification was analyzed by calculating the difference 

between the time it takes for each level of fall risk to be 

first presented and calculated distance applied to the 

estimation of the fall risk level. 

This analysis was done on another PC. The PC used 

for the analysis was MacBook Pro (Made by Apple Inc., 

CPU: Intel Core i9 (2.3 [GHz], 8 Core), RAM: 16 [GB]), 

and the software was MATLAB R2021a. 

In the analysis, 𝐻road = 1.32[m], 𝜃 = 30[deg], 𝐷𝑚𝑖𝑛 = 

1.35[m], 𝐷𝑓𝑎𝑟= 2.35[m], ℎ𝑡ℎ = 0.05[m]. The grid width 

was 0.05[m] in both the 𝑋 and 𝑌-axis directions, and 1 

distance threshold was set 1.85[m]. 

 

 

 

Fig.  5  Conditions of task 
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3. Results 

3.1. Accuracy of Minimum Distance from Edge 

The error average of the minimum distance on each 

condition as shown in Table 1. When approach angle 𝜃𝑎 

was 90 [deg], the average errors were less than 5 [%], but 

when 𝜃𝑎 = 45 [deg], the errors were around 15 [%]. 

3.2. Responsivity of Fall Risk Notification 

The difference average in time at the first notification of 

each fall risk level as shown in Table 2. When the 

approach angle was 𝜃𝑎 = 90[deg], the differences in time 

were within the range of ±0.04[s], but when 𝜃𝑎 = 45[deg], 

the differences were calculated to be around 0.4[s]. 

4. Discussion 

4.1. Effect of Approach Angle 

In this experiment and analysis, they were shown that the 

minimum distance from the edge and the time to the first 

notification of each fall risk level both tended to worsen 

when the approach angle 𝜃𝑎 = 45[deg]. 

      This cause seems different grid position of the 

minimum distance from the ideal one when the edges on 

the grid map do not have a straight-line shape as shown 

in Fig. 6. This cause effect to the error in the minimum 

distance by the amount of the grid width, so it is 

necessary to consider the allowable error including the 

grid width. 

The current algorithm focuses on a single grid point 

closest to the edge. Therefore, the value of the minimum 

distance can be unstable, depending on the shape of the 

edge.  The unstable notification can confuse the user4, we 

should consider segmentation method such as line fitting 

for the edge. 

 

Table 1. The error average of the minimum distance 

Error average [%] 

Times 1st. 2nd. 3rd. 

𝜃𝑎 = 90 [deg] 5.01 2.20 4.24 

𝜃𝑎 = 45 [deg] 15.0 15.6 15.4 

 

Table 2. The difference in time at the first notification  

 Difference average in time [s] 

Times 1st. 2nd. 3rd. 

𝜃𝑎 = 90 [deg] 0.034 -0.039 0.028 

𝜃𝑎 = 45 [deg] 0.418 0.445 0.423 

 

4.2. Challenges in Use by the Visually Impaired 

Based on the results of this experiment, there are two 

specific issues that need to be considered when 

considering the actual use of this system by visually 

impaired people. 

The first issue is to stabilize notifications. As 

mentioned in the previous section, the current algorithm 

causes unstable notifications when approaching at an 

angle, i.e., when walking on the platform and 

approaching the edge of the platform, which may lead to 

confusion for the user. This issue will be considered in 

line with the aforementioned. 

The second issue is the timing of the notification. As 

can be seen from Table 2, the timing of notification was 

found to be later than the ideal one in most cases.     

Considering the delays caused by the communication 

with the vibration device and the reaction speed of the 

user, it is necessary to set a margin for the timing of 

notification considering the above matters. 

5. Conclusion 

In this paper, we evaluated an algorithm for the fall risk 

notification system that visually impaired people of their 

risk of falling using depth information from LiDAR 

sensor on iPhone 12 Pro. We mainly evaluated the 

accuracy of the minimum distance and the responsivity 

of the notification and found that the above two 

parameters deteriorated when approaching diagonally to 

the edge. 

In the future, we will try to solve the above problems, 

and stabilize of notification and implement the 

notification timing added safety margin. 
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