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Abstract 

For the test suite of randomness, a characterization method of the individual tests is proposed. The proposed method 

is based on the clustering of the results of individual tests for the alternative hypothesis constructed by the weakly 

correlated chaotic sequences. These sequences are generated by the chaotic true orbit of the piecewise linear chaotic 

map corresponding to the Markov process. Then we apply our proposed method to the test suite of NIST SP800-22 

and try to construct an optimal subset in terms of the distance among tests. 

Keywords: randomness test, NIST SP800-22, chaotic true orbit, piecewise linear chaotic map 

1. Introduction

High quality pseudo-random number sequences are 

required in various fields of engineering, and the 

statistical test of randomness is one of the important 

subjects. A typical test suite of randomness, e. g. NIST 

SP800-221, is defined as a set of several different kinds 

of randomness tests. One problem here is that the 

similarity between the individual tests included in the test 

suite is not obvious, and it is difficult to make an 

argument for the optimality of a set of randomness tests. 

For this problem, Doganaksoy et al. and Sulak et al. 

studied the independency among tests and the 

construction of optimal subset of tests based on the 

experimental results2,3. Iwasaki theoretically proved the 

equivalency among some tests4. These studies based on 

the null hypothesis. To analyze the effectivity of test 

subsets, the analysis of the statistical power to detect the 

alternative hypothesis is also necessary. 

In this study, we propose a characterization method 

of randomness tests based on the test results of weakly 

correlated binary sequences that corresponds to the 

alternative hypothesis. Theses weakly correlated binary 

sequences are generated by the piecewise linear chaotic 

map and its chaotic true orbits5-8 to guarantee their 

stochastic properties, exactly9. We apply our proposed 

method to characterize randomness tests included in the 

test suite of NIST SP800-22 and try to construct the 

optimal subsets in terms of the distance among tests 

based on the test results of the alternative hypothesis.  

2. Randomness Tests and Definitions

Let the target randomness test suite 𝛤𝑡𝑠 consist of 𝑁 tests

𝛤𝑡𝑠 = {𝑇1, 𝑇2, ⋯ , 𝑇𝑁}. (1)

For example, the randomness test suite NIST SP800-22 

consists of 15 kinds of 188 random number tests.  
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The null hypothesis 𝐻0  of each randomness test is

that the target sequence has the ideal statistical properties 

of the random number. Let the target sequences of the 

randomness test be the 𝑚 binary sequences with length 

𝑛. In the randomness test 𝑇𝑖 ∈  𝛤𝑡𝑠, each target sequence

is tested, and the p-value is obtained from its test statistic. 

The p-value corresponds to the probability that the 

test statistic is equal to or more extreme (farther from 𝐻0)

than the test statistic calculated from the target sequence 

when the null hypothesis 𝐻0 is true. If the p-value is less

than the significance level 𝛼, 𝐻0  is rejected, otherwise

𝐻0  is accepted, which means the target sequence is

judged to be random. As results, we obtain 𝑚 p-values 

and decisions of randomness for each test 𝑇𝑖 ∈  𝛤𝑡𝑠.

2.1. Feature Vector and Distance Matrix 

To characterize the randomness test, we consider the set 

of different 𝑀 alternative hypotheses 

𝛬𝑎𝑙𝑡 = {𝐻1, 𝐻2, ⋯ , 𝐻𝑀}. (2)

For each alternative hypothesis 𝐻𝑎 ∈ 𝛬𝑎𝑙𝑡 , 𝑚  target

sequences that obeys 𝐻𝑎  are generated and tested for

each  𝑇𝑖 ∈  𝛤𝑡𝑠. Let the obtained p-value of the  𝑘-th tested

sequence be 𝑝𝑇𝑖(𝑘; 𝐻𝑎) and the mean p-value be 𝑝̅𝑇𝑖(𝐻𝑎).

The feature vector of the randomness test 𝑇𝑖  is defined as

𝑣̅(𝑇𝑖; 𝛬𝑎𝑙𝑡) = {𝑝̅𝑇𝑖(𝐻1), 𝑝̅𝑇𝑖(𝐻2),⋯ , 𝑝̅𝑇𝑖(𝐻𝑀)}. (3) 

Then we construct the distance matrix such as 

𝐷(𝛤𝑡𝑠; 𝛬𝑎𝑙𝑡) = (

𝑑1,1 ⋯ 𝑑1,𝑁
⋮ ⋮

𝑑𝑁,1 ⋯ 𝑑𝑁,𝑁

), (4) 

where 𝑑𝑖,𝑗 is the distance between two feature vectors,

𝑑𝑖,𝑗 = |𝑣̅(𝑇𝑖) − 𝑣̅(𝑇𝑗)| (5) 

and | ⋅ | denotes the Euclidean norm. Furthermore, we 

define the total distance of the tests set 𝛤 ⊆ 𝛤𝑡𝑠 such as

𝑡𝑑(𝛤) = ∑ 𝑑𝑖,𝑗
𝑇𝑖,𝑇𝑗∈𝛤

. 
(6) 

We propose this distance (Eq. (5)) as a measure of the 

similarity between two tests and the total distance (Eq. 

(6)) as a measure of the variety of the tests set. 

2.2. Empirical Power of Multiple Testing 

The power of the test 𝑇𝑖 ∈  𝛤𝑡𝑠with the significance level

𝛼 for the alternative hypothesis 𝐻𝑎 ∈ 𝛬𝑎𝑙𝑡  is defined as

𝑃𝑤(𝑇𝑖; 𝐻𝑎 , 𝛼) =
1

𝑚
#({ 𝑘 | 𝑝𝑇𝑖(𝑘; 𝐻𝑎) < 𝛼}), (7)

where #(⋅) denotes the number of elements. The power 

of the multiple testing with the 𝐾 tests 

𝛤𝐾 = {𝑇𝑖1 , 𝑇𝑖2, ⋯ , 𝑇𝑖𝐾} ⊆ 𝛤𝑡𝑠 (8)

with the significance level 𝛼  for the alternative 

hypothesis 𝐻𝑎 ∈ 𝛬𝑎𝑙𝑡 is defined as

𝑃𝑤(𝛤𝐾; 𝐻𝑎 , 𝛼)

=
1

𝑚
#({ 𝑘 |∃𝑇𝑖 ∈ 𝛤𝐾: 𝑝𝑇𝑖(𝑘; 𝐻𝑎) <

𝛼
𝐾
}). 

(9) 

Here, the Bonferroni correction is applied to the 

significance level of each test as 𝛼/𝐾  to maintain the 

significance level of the multiple testing that are rejected 

if even one of the tests in 𝛤𝐾  is rejected. The Bonferroni

correction, however, assumed the independency between 

tests. Since the some of the tests included in NIST 

SP800-22 are not independent, the actual significance 

level is expected to be smaller than 𝛼. 

3. Construction of Alternative Hypotheses

In this study, we construct alternative hypotheses using 

weakly correlated chaotic sequences9. As an alternative 

hypothesis, we consider the weakly correlated sequences 

that has the following stochastic properties. (i) The 

probability of the length 𝑙 subsequences are equal to 2−𝑙.

(ii) The conditional probability of 0 and 1 following the 

specified length 𝑙 subsequences  

𝑠 = 0𝑠2⋯𝑠𝑙 , 𝑠′ = 1𝑠2⋯𝑠𝑙  (𝑠𝑖 ∈ {0,1}) (10)

is given as 

{
𝑃(0|𝑠) = 𝑃(1|𝑠′) = 1/2 + 𝑒

𝑃(1|𝑠) = 𝑃(0|𝑠′) = 1/2 − 𝑒
  , (11) 

where −1/2 < 𝑒 < 1/2 . This binary sequence can be 

generated using the chaotic dynamical system that 

exactly corresponds to the Markov process. This chaotic 

dynamical system 

𝑥𝑖+1 = 𝑔(𝑥𝑖)     (𝑥𝑖 ∈ [0,1)) (12) 

 is given by the piecewise linear map 

𝑔(𝑥) = 

{

𝜉+ ⋅ (𝑥 + 2ℎ𝑒Δ) (𝑥 ∈ 𝐼1 )

𝜉− ⋅ (𝑥 − 2(ℎ + 1)𝑒Δ) (𝑥 ∈ 𝐼2) )

2𝑥 (𝑥 ∈ 𝐼0 ∪ 𝐼3) 

𝜉− ⋅ (𝑥 − 2
−1 − 2ℎ𝑒Δ) (𝑥 ∈ 𝐼5)

𝜉+ ⋅ (𝑥 − 2
−1 + 2(ℎ + 1)𝑒Δ) (𝑥 ∈ 𝐼6 )

2𝑥 − 1 (𝑥 ∈ 𝐼4 ∪ 𝐼7 )

, 
(13) 
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where ℎ = 0,1,⋯ , 2𝑙−1 − 1 is a number that corresponds

to the subsequence 𝑠  as binary number, 𝜉± = 2/(1 ±

2𝑒) , Δ = 2−𝑙， 𝐼𝑖 = [𝑎𝑖 , 𝑎𝑖+1) , 𝑎0 = 0, 𝑎1 = ℎΔ ,

𝑎2 = (ℎ + 𝜉+
−1)Δ, 𝑎3 = (ℎ + 1)Δ, 𝑎4 = 2−1 , 𝑎5 =

2−1 + ℎΔ, 𝑎6 = 2
−1 + (ℎ + 𝜉−

−1)Δ, 𝑎7 = 2−1 + (ℎ +

1)Δ, and 𝑎8 = 1.The example of 𝑔(𝑥) is shown in Fig.

1. The shape of 𝑔(𝑥) is a partly modified form of the

Bernoulli map that generate the ideal random sequences. 

This dynamical system corresponds to the Markov 

process shown in Fig. 1(b).  

By using the dynamical system (Eq. (12)), we can 

obtain the binary sequence 𝑠1𝑠2⋯𝑠𝑛  such as

𝑠𝑖 = {
0 (0 ≤ 𝑥𝑖 < 1/2)
1 (1/2 ≤ 𝑥𝑖 < 1)

 , (14) 

for the given initial point 𝑥0. This binary sequence obeys

the stochastic properties (i) and (ii), exactly. In this study, 

we calculate exact chaotic true orbit5-8 of the dynamical 

system (Eq. (12)) and generate binary sequences that 

obey the alternative hypothesis. 

4. Numerical Experiments

In this study, we try to characterize 14 randomness tests 

included in the NIST SP800-22 test suite. The target 

randomness tests 𝛤𝑡𝑠  are listed in Table 1. The non-

overlapping template matching test and the random 

excursions, and its variant were excepted.  

We generated 𝑚 = 103 binary sequences with length

𝑛 = 106 using Eq. (12) and (14), where 𝑙 = 4,⋯10, 𝑒 =

±4−1, ±8−1, ±16−1, and 8 different patterns of 𝑠 and 𝑠′

for each  𝑙 . Totally, 𝑀 = 336  alternative hypotheses 

were constructed as 𝛬𝑎𝑙𝑡 . For the generated binary

sequences, we applied the target 14 randomness tests in 

𝛤𝑡𝑠 and calculated the p-value for each test and sequence. 

Then, we obtained the feature vectors (Eq. (3)) and the 

distance matrix (Eq. (4)). Examples of the cluster 

analysis based on the feature vector and the distance 

matrix are shown in Fig. 2. Fig. 2(a) is an example of the 

two-dimensional representation of the distance relation in 

𝐷(𝛤𝑡𝑠; 𝛬𝑎𝑙𝑡). This figure indicates the similarity among

tests, e. g., AE and S1, LR and OT, DFT and S2, and the 

others except U. These similarities are also confirmed by 

the results of hierarchical cluster analysis shown in Fig. 

2(b). These cluster analyses were performed using R.  

The mean power of each test for 𝛬𝑎𝑙𝑡  is shown in

Table 1. As a result, AE and S1 have high power to detect 

𝛬𝑎𝑙𝑡 . On the other hand, F, BF, CS, RU, RK and LC could

not detect 𝛬𝑎𝑙𝑡 . Then, we constructed the optimal subset

and the worst subset in terms of the maximization of the 

total distance (Eq. (6)) with respect to the size of subset 

𝐾 = 2,⋯ ,7. Results are shown in Table 2 and Table 3, 

respectively. Here, 𝑃𝑤(𝛤𝐾)  is the mean power of the

multiple testing 𝛤𝐾  (Eq. (8)) for 𝛬𝑎𝑙𝑡 . For the case of 𝐾 =

2, the most distant pair AE and LC is optimal and the 

closest pair CS1 and CS2 is worst. The obtained optimal 

subsets are consistent with the results of the cluster 

analysis shown in Fig. 2. These results suggest that our 

method can construct the optimal subset with low 

similarity. However, our method cannot distinguish 

several tests that have low sensitivity to the proposed 

alternative hypothesis. To improve this problem, a more 

varied set of alternative hypotheses is necessary. 

5. Conclusion

In this study, we proposed the characterization method of 

randomness tests and applied to 14 randomness tests in 

NIST SP800-22. As results, we obtained the optimal 

subsets in terms of the maximization of the total distance 

among tests. The characterization of all tests in NIST 

(a)  (b) 

Fig. 1.  (a) An example of the piecewise linear chaotic map and 

(b) corresponding Markov process for the case that 𝑙 = 3, ℎ =
1 (𝑠 = 001) , and 𝑒 = 1/4 . The rectangular part of (a) is 

modified from Bernoulli map.  

(a)  (b) 

Fig. 2.  Examples of the cluster analysis based on the distance 

matrix 𝐷(𝛤𝑡𝑠). (a) A two-dimensional representation of 𝐷(𝛤𝑡𝑠)

using the classical multidimensional scaling. Rectangular are 

magnifications of dense areas.  (b) A cluster tree obtained by 

the hierarchical cluster analysis.  
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SP800-22 and the construction of other types of 

alternative hypothesis are our next future works.  
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Table 2.  The optimal subset that maximizes the total distance. 

K 𝑡𝑑(𝛤𝐾) 𝑃𝑤(𝛤𝐾) 
𝛤𝐾 that maximize the total 
distance 𝑡𝑑(𝛤𝐾). 

2 8.8  0.865 AE, LC 

3 20.3  0.864 BF, LR, AE 

4 37.9  0.860 BF, LR, AE, S1 

5 59.4  0.857 BF, LR, U, AE, S1 

6 84.4  0.854 BF, LR, U, AE, S1, LC 

7 111.2  0.852 BF, LR, U, AE, S1, S2, LC 

Table 3. The worst subset that minimizes the total distance. 

K 𝑡𝑑(𝛤𝐾) 𝑃𝑤(𝛤𝐾) 
𝛤𝐾 that minimize the total 
distance 𝑡𝑑(𝛤𝐾). 

2 0.1  0.007  CS1, CS2 

3 0.5  0.005  F, CS1, CS2 

4 1.4  0.006  F, CS1, CS2, RK 

5 2.6  0.007  F, CS1, CS2, RU, RK 

6 4.2  0.008  F, CS1, CS2, RU, RK, LC 

7 9.6  0.009  F, BF, CS1, CS2, RU, RK, LC 

 

Table 1.  The mean power of randomness tests in 𝛤𝑡𝑠  for the 

constructed alternative hypotheses 𝛬𝑎𝑙𝑡. 

Target tests 𝛤𝑡𝑠 and abbreviations 𝑃𝑤(𝑇𝑖) 

Frequency Test F 0.010 

Block Frequency Test BF 0.012 

Cumulative Sums Test 
CS1 0.010 

CS2 0.010 

Runs Test RU 0.010 

Longest Run Test LR 0.122 

Matrix Rank Test RK 0.010 

DFT Test DFT 0.041 

Overlapping Template 

Matching Test 
OT 0.124 

Universal Test U 0.198 

Approximate Entropy Test AE 0.878 

Serial Test 
S1 0.628 

S2 0.090 

Linear Complexity Test LC 0.010 
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