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Abstract 

Feature selection is a popular pre-processing technique applied to enhance the learning performances of machine 

learning models by removing irrelevant features without compromising their accuracies. The rapid growth of input 

features in big data era has increased the complexities of feature selection problems tremendously. Given their 

excellent global search ability, differential evolution (DE) and particle swarm optimization (PSO) are considered as 

the promising techniques used to solve feature selection problems. In this paper, a new hybrid algorithm is proposed 

to solve feature selection problems more effectively by leveraging the strengths of both DE and PSO. The proposed 

feature selection algorithm is reported to achieve an average accuracy of 89.03% when solving 7 datasets obtained 

from UCI Machine Learning Repository.  

Keywords: Feature Selection; Particle Swarm Optimization (PSO); Differential Evolution (DE); Metaheuristic 
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1. Introduction

Feature selection1 is a popular pre-processing

technique used to address the “curse of dimensionality” 

issue by eliminating redundant features from large-scale 

datasets. Feature selection is widely used in real-world 

problems due to its ability to reduce storage space and 

computational time required for training the predictive 

models without sacrificing their performances2,3. Feature 

selection is formulated as a non-deterministic 

polynomial-time (NP) hard combinatorial problem that is 

not trivial to solve, especially when it involves the large 

input feature size of 100D  4.  

Nature-inspired algorithms have emerged as effective 

approach to solve the complex real-world optimization 

problems due to their promising global search ability. 

Differential evolution (DE)5 and particle swarm 

optimization (PSO)6 are the two most popular nature-

inspired algorithms widely used to solve different types 

of optimization problems7,8,9,10,11,12,13,14. However, the 

capability of conventional DE and PSO to tackle large-

scale feature selection problems remains unexplored. The 

presence of excessive irrelevant features in original 

datasets can introduce massive number of local optima in 

search space and increase the complexity of feature 

selection problem. For conventional DE and PSO, the 

random initialization scheme adopted do not fully 

consider any information around their search 

environments, therefore the quality of initial population 

obtained is questionable15. The “No Free Lunch 

Theorem”16 is another factor that restrict the 

performances of conventional DE and PSO to tackle 

various optimization problems. More robust optimization 

algorithms are required to handle the feature selection 

problems with different complexity levels effectively.  

In this article, a hybrid DE and PSO with chaotic-

opposition-based initialization scheme (HDPCIS) is 

proposed to address the aforementioned challenges in 

performing feature selection. A chaotic-opposition-based 

initialization scheme (CIS) is first incorporated into 
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HDPCIS to generate an initial population with better 

solution quality. A hybridization scheme that aims to 

leverage the benefits of DE and PSO is also introduced 

to achieve better tradeoff in terms of search efficiency 

and diversity preservation. The performance of HDPCIS 

to solve different feature selection problems are assessed 

with 7 datasets of UCI Machine Learning Repository.  

2. Related Works 

2.1. Conventional DE 

Given a set of randomly initialized DE solution with the 

population size of N, each n-th solution of Xn = [Xn,1, …, 

Xn,d,…, Xn,D] represents a candidate solution of a given 

problem with total dimension size of D, where d[1, D] 

and n[1, N] refer to the dimension and solution indices, 

respectively. During the evolution process of DE, a 

mutation process is first performed using “DE/rand/1” 

strategy to generate a donor vector Un = [Un,1, …, Un,d,…, 

Un,D] for each n-th target vector Xn = [Xn,1, …, Xn,d,…, Xn,D] 

as follow: 

( )n a b cU X F X X= + −   (1) 

where F is a scaling factor in range of 0 to 1; Xa, Xb and 

Xc are three randomly selected solutions from population 

with n  a  b  c. 

An offspring vector Yn = [Yn,1, …, Yn,d,…, Yn,D] is then 

produced for each n-th solution by performing crossover 

on the target vector Xn = [Xn,1, …, Xn,d,…, Xn,D] and donor 

vector Un = [Un,1, …, Un,d,…, Un,D]. Define Cr[0.5, 1] as 

the crossover probability, the d-th dimension of each n-

th offspring vector can be computed as: 
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For selection process, the fitness value of Yn is compared 

with that of Xn in terms of their fitness values as a 

selection process. The latter solution is replaced if the 

former one has better fitness value.  

2.2. Conventional PSO 

Each n-th candidate solution or particle consists of two 

vectors define its current state, i.e., the velocity Vn = 

[Vn,1, …, Vn,d,…, Vn,D] and position Xn = [Xn,1, …, Xn,d,…, 

Xn,D], where d[1, D] and n[1, N]. Each PSO particle 

can memorize the best solution found by itself and 

population that are denoted as

,1 , ,,..., ,...,best best best best

n n n d n DP P P P =    and 

1 ,..., ,...,best best best best

d DG G G G =   , respectively. The velocity 

Vn and position Xn of each particle n are updated as:  

( ) ( )1 1 2 2

new best best

n n n n nV V c r P X c r G X= + − + −    (3) 

new new

n n nX X V= +    (4) 

where   js inertia weight; 
1c  and 

2c  are acceleration 

coefficients; 
1r  and 

2r  are two random numbers obtained 

from uniform distribution in range of 0 to 1. The fitness 

value of 
nX  is compared with those of best

nP  and 
bestG . 

The latter two solutions are replaced if the former one has 

better fitness value.  

2.3. Feature Selection Problem 

Feature selection is considered as a bi-objective 

optimization problem, aiming to minimize the number of 

selected features and maximize the classification 

accuracy, simultaneously. In order to satisfy these 

objectives, a fitness function is formulated to measure the 

quality of each candidate solution as follow17:  

( ) S

T

F
f

F
 = +   (5) 

where  0,1   and ( )1 = −  refer to the parameters 

measuring the weightage of classification quality and 

subset length, respectively;   represents the 

classification error; SF  and TF  indicate the selected 

subset of features and the total number of features in 

original dataset, respectively.  

3. The Proposed HDPCIS 

At the beginning of search process, a chaotic-opposition-

based initialization scheme (CIS)8 is incorporated to 

replace random initialization scheme. A chaotic swarm 
CS  and an opposite swarm OS  are produced by CIS 

based on the modified sine map and opposition-based-

learning strategy, respectively. CS and OS are then 

combined to form a merged population M . After all the 

solution members of M  are sorted from the worst to the 

best based on their fitness values, the first best N 

members of M are selected to construct the initial 

population  1,..., ,...,I

n NX X X =  of HDPCIS.  

For the proposed hybridization scheme, DE and PSO 

are employed as the primary and secondary algorithms 

used to evolve candidate solutions, respectively. During 

the DE stage, a mutation scheme of Eq. (1) is performed 

to generate a donor vector 
n  for each solution n. The 

corresponding offspring vector 
n  is computed based on 

Eq. (2). A greedy selection scheme is applied to compare 

the fitness of 
n  with that of 

nX . The latter solution is 
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replaced by the former solution if the former solution has 

better fitness value. The greedy selection scheme is also 

used to update the best solution in population Gbest.  

If
n computed by DE has better fitness than original 

Xn, PSO is triggered as secondary optimizer to refine Xn. 

In PSO stage, the velocity component of solution n is 

updated as follow:  

( )new best

n n nV V c G X= + −  (6) 

where c refers to acceleration coefficient. Notably, the 

velocity update equation of HDPCIS in Eq. (6) only 

considers social component. For HDPCIS, Xn is 

essentially equivalent to self-cognitive component best

nP

because it only updated when a better solution is found 

in optimization process. Given new

nV , the new position 
new

nX  is calculated with Eq. (4). Both of Xn and Gbest are 

replaced by new

nX , if the latter solution is more superior 

than the former solutions. Otherwise, new

nX  with worse 

fitness will be discarded.  

The overall framework of HDPCIS is summarized in 

Fig. 1. The optimization process is iterated until the 

termination criteria 
max   is satisfied, where   and 

max  represent the fitness evaluation counter and the 

predefined maximum fitness evaluation number.  

 

Algorithm: HCPCIS 

Inputs: D, N, Ub, Lb Cr, F,  , c,  , 
max  

01: Initialize 0  ; 

02: Produce  1,..., ,...,I

n NX X X =  using CIS; 

03: 2N  + ; 

04: while 
max   do 

05:  for each solution n do //Execute DE. 

06:   Produce n  using Eq. (1); 

07:   Produce n  using Eq. (2); 

08:   Evaluate fitness of n  using Eq. (5); 

09:   1  + ; 

10:   Update Xn and Gbest with greedy selection; 

11:   if ( ) ( )n nf X f   then // Execute PSO 

13:    Calculate new

nV  using Eq. (6); 

14:    Calculate new

nX  using Eq. (4); 

15:    Evaluate fitness of new

nX  using Eq. (5); 

16:    1  + ; 

17:    Update Xn and Gbest with greedy selection; 

18:   end if 

19:  end for 

20: end while 

Outputs: Gbest 

Fig. 1. Pseudocode of HDPCIS.  

 

4. Performance Evaluations of HDPCIS 

4.1. Simulation settings 

The performance of HDPCIS to solve feature selection 

problem is evaluated using seven datasets obtained from 

the UCI Machine Learning Repository18, i.e., (a) glass 

identification, (b) lymphography, (c) lung cancer, (d) 

multiple features, (e) statlog (heart), (f) ionosphere and 

(g) iris. The proposed HDPCIS is compared with four 

peer algorithms known as: chaotic-opposition-based 

hybridized DE with PSO (CO-HDEPSO)8, chaotic-

opposition-based differential evolution (CO-DE), 

conventional DE (DE)5 and conventional PSO (PSO)6, in 

terms of the mean accuracy meanAcc  and average 

numbers of selected features avgnF .  The population size 

and maximum fitness evaluations numbers of all 

algorithms are set as N = 10 and max 1000 = , respectively. 

All algorithms are simulated for 30 times to solve the 

selected datasets.  

4.2.  Comparisons between selected algorithms 

The meanAcc  and avgnF  values obtained by all 

algorithms in solving 7 selected image datasets are 

reported in Tables 1 and 2, respectively. The best and 

second-best results are indicated by boldface and 

Table 1. Mean accuracy meanAcc   

Datasets HDPCIS 
CO-

HDEPSO 

CO-

DE 
DE PSO 

(a) 0.7952 0.7762 0.7619 0.7143 0.7286 

(b) 0.5725 0.5724 0.5448 0.4621 0.5448 

(c) 1.0000 1.0000 1.0000 0.9600 0.6400 

(d) 0.9825 0.9730 0.9715 0.9705 0.9695 

(e) 0.9074 0.8926 0.8667 0.7852 0.8556 

(f) 0.9743 0.9714 0.9543 0.9457 0.9114 

(g) 1.0000 1.0000 1.0000 1.0000 0.9667 

 

Table 2. Average number of selected features 
avgnF . 

Datasets HDPCIS 
CO-

HDEPSO 

CO-

DE 
DE PSO 

(a) 3.8 4.8 4.8 3.8 5.4 

(b) 4.2 7.0 4.8 6.0 8.4 

(c) 12.4 14.8 12.8 14.2 21.2 

(d) 273.4 308.2 295.2 285.6 308.6 

(e) 3.2 5.0 4.4 4.4 4.8 

(f) 9.6 10.4 10.8 11.0 14.4 

(g) 1.0 1.0 2.0 1.0 1.0 
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underlined fonts, respectively. Table 1 reported that the 

HDPCIS has the best feature selection performance by 

producing the meanAcc  values for seven datasets. This is 

followed by CO-HDEPSO, CO-DE, DE, and PSO that 

produce the best meanAcc  values in 2, 2, 1, and 0 dataset, 

respectively. On the other hand, Table 2 reported that the 

proposed HDPCIS has the best performance in selecting 

optimal number of features by producing best avgnF for 

all seven datasets. This is followed by DE, CO-HDEPSO, 

PSO, and CO-DE that obtain the best avgnF values for 2, 

1, 1, and 0 datasets, respectively. 

5. Conclusions 

A new hybridization algorithm of HDPCIS is introduced 

to solve feature selection problem effectively. A CIS 

module is first employed to initialize a population with 

better quality to reduce the possibility of premature 

convergence. A hybridization scheme is designed with 

DE as the primary algorithm and PSO as the secondary 

algorithm, to achieve better balancing of exploration and 

exploitation search behaviors. The simulation studies 

reported that the proposed HDPCIS can outperform its 

peer algorithms by solving feature selection problems 

with higher accuracy and lesser selected features.  
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