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Abstract 

In Japan, the forestry workforce is dramatically declining. Therefore, field robots are investigated to replace humans 

for dangerous actions. Task execution with such mobile robots requires localization and mapping. This research 

focuses on online SLAM implemented on SOMA forestry robot developed at Hayashi Laboratory. In this approach, 

the core algorithm is a Rao-Blackwellized particle filter. A realistic simulation has been build using Gazebo and the 

results of first experiments speak for real-time capability. 
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1. Introduction

Japanese forestry workers have a more and more 

advanced age. Consequently, because little youths want 

to apply for a job in this sector, the number of people in 

*7 rue Peyron, Vienne (38200), France 

the field is shrinking. At the same time, the need of forest 

management is increasing. Owing to all this factors, in 

addition to hazardous nature of some forestry tasks, 

introducing robots on the field could be beneficial. One 

prototype for this purpose is currently designed at 
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Hayashi Laboratory. This robot, named SOMA,1 has 

been built from an All-Terrain Vehicle (ATV) and many 

sensors like odometers, GPS (Global Positioning 

System), IMU (Inertial Measurement Unit), RGB-D 

cameras and lidar have been fixed to it. 

 Every mobile robot – including forestry ones – 

requires some navigation system to be able to execute its 

tasks and Simultaneous Localization and Mapping 

(SLAM) is an essential part of it. Unless most 

applications where full SLAM is first solved only for 

mapping and then localization is performed within the 

previously built map, this research is investigating online 

SLAM for forestry robots. This approach is motivated by 

the fact that building a map in advance demands time. 

Furthermore, it needs to be done every time the 

environment where the robot evolves changes. As a result, 

it enables computation savings only when the world stays 

identical for a long time. However, forests are constantly 

changing because of trees being planted, growing and 

being felled. In addition, the robot can be led to work in 

different areas. This point explains the choice of solving 

online SLAM for this specific application. 

 Among various algorithms available, FastSLAM was 

chosen because of its multimodal beliefs management 

ability, inherent to its use of a particle filter.2 

 This article begins with the description of the 

approach and how simulation experiments were 

conducted. Then, the obtained results are detailed and 

analyzed, before conclusion and opening on future 

research being drawn. 

2. FastSLAM for Forestry Robot 

The FastSLAM algorithm is based on a Rao-

Blackwellized particle filter in which a particle 

represents a joint hypothesis of the pose of the robot and 

the map through the positions of landmarks.2 The 

uncertainty of the map is represented by associating a 

Kalman filter to each feature in it. Thus, each particle 

contains a weight, a pose and a collection of Kalman 

filters depicting the environment. 

 Different parts of the algorithm need to be specified 

according to the forestry context. First, since trees are 

very common and easily distinguishable in a forest, there 

were chosen as landmarks to which the environment is 

mapped.  

A particle filter being a variety of Bayes filter, it also 

requires motion and observation models to be 

implemented. 

2.1. Motion 

The motion model is based on the odometry captured by 

the rotary encoders mounted on the wheels of the robot. 

Each movement is decomposed in three parts: a first 

rotation, a translation and a second rotation, and linear 

gaussian noise is assumed for each of them. 

2.2. Observation 

With regard to observation, the sole sensor used is the 

lidar on top of the robot and thereby a range-bearing 

model was chosen. The coordinates of the trees are 

determined by extracting the centers of 3D clusters made 

from lidar pointcloud, after having clipped the latter in 

height to remove ground and foliage and keep only tree 

trunks (Fig. 1). Assuming linear gaussian noise for 

individual readings of the lidar, these coordinates can be 

proved to be also corrupted with gaussian noise. 

Fig. 1. Clusters made from lidar pointcloud 

2.3. Correspondences and map management 

Another important part of every SLAM solver is how to 

get correspondences between observations and features 

in the map being built. The largely used maximum 

likelihood approach was chosen. In FastSLAM, 

correspondences are determined per particle and not for 

the whole particle set, enabling some diversity of data 

association. 
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2.1.1.  Multiple observations 

Multiple observations are often split into individual ones 

and processed sequentially. However, it can lead to 

wrong fusions of landmarks, because two observations 

generated by two different landmarks can be assigned to 

the same feature in the map. On account of this issue, we 

here try to handle multiple observations at once thanks to 

the Gale-Shapley algorithm.3 

The likelihood of each feature in the lidar visibility 

scope is computed for each observation and a list of 

features ordered by decreasing probability is made for the 

latter. Then, each observation is appaired with the first 

feature in its list. If more than one observation is linked 

with the same feature, only the observation with the 

highest likelihood keeps it and the second-ranked ones 

are attributed to the others. This step is repeated until 

each observation is appaired with a different feature. 

When the likelihood of an attributed feature is less than a 

threshold or when there are no more features in the list to 

continue the process, a new feature is created for the 

corresponding observation. 

2.1.1.  Features deletion 

Features can also be subject to deletion when it appears 

that they do not correspond to a tree anymore. This action 

is realized along with correspondences establishment and 

the same threshold is used. Of course, it is not applied to 

features which are not considered to be in the lidar 

visibility scope. 

2.4. Particles handling 

Particle filters are often subject to what is named particle 

deprivation, that is the decrease of the diversity of the 

particle set over time. Therefore, resampling is used to 

counteract this drawback. In addition, resampled 

particles are slightly randomized by applying gaussian 

noise with the same order of magnitude than motion 

noise. 

 

3. Experiments 

For simulation purposes, a model of SOMA robot has 

been developed in Rviz and Gazebo using ROS, along 

with a realistic forest environment. The latter is made of 

a ground and 16 pine trees and measures 30 by 30 meters 

(Fig. 2).  

Fig. 2. Robot model in Gazebo environment 

In order to simulate motor noise, a ROS node was 

introduced between the steering controller and Gazebo. 

This node adds linear gaussian noise to linear and angular 

velocity commands before publishing them to a new 

topic to which Gazebo subscribes (Fig. 3). 

 

Fig. 3. Graph of motion nodes and topics 

 Different experiments have been conducted in order 

to determine the effect of the number of particles and the 

number of trees on the overall precision and update rate 

of the implementation. For each of them, the robot is 

going straight from the left to the right in the forest 

environment. 
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4. Discussion 

Fig. 4. Display of simulation (red point is real position, black 

line in front of red point is real heading, space between the two 

dotted red circles is lidar visibility scope, blue crosses are trees, 

green points are positions of particles, black point is position of 

the most probable particle, green crosses are features in the map 

of the most probable particle) 

With realistic motion and observation noises and 100 

particles, the distance between real and estimated poses 

at the end of the simulation is about 2.39 m, and the 

average distance between trees and associated features is 

0.81 m (Fig. 4). Five trees over 16 are represented by 

multiple features and one feature does not correspond to 

any tree. In addition, the update rate in this case is about 

1 Hz. 

Overall, the robot is well tracked along its path. 

However, we can notice that the pose estimation is 

increasingly late compared to the real pose. This 

systematic shift can be explained by two factors. First, 

because this effect is observed even without motion noise, 

we can suppose odometry to be captured late. However, 

the main cause seems to be the imprecision of the 

computation of the coordinates of the trees. Indeed, the 

latter is based on the clusters made from lidar pointcloud. 

The centers of these do not coincide with the centers of 

trunks, because only a part of each tree is seen by the 

robot at one time. As a consequence, the center of each 

cluster is changing a lot as the robot is moving around the 

corresponding tree (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Centers of clusters depending on the pose of the robot 

Thus, depending on the ratio between motion and 

observation noises, the pose estimation can be overly 

updated according to this modification of the coordinates 

of the features, and induce a shift between real and 

estimated poses. This is why the use of circle pattern 

recognition should be used in each cluster to get the right 

coordinates of trees in future research. 

4.1. Effect of the number of particles 

The number of particles does not seem to have a very 

significant effect on the overall precision of the 

implementation. Even 5 particles are sufficient to get 

quite accurate final pose and map. As expected, the 

update rate decreases with the number of particles. 

Finally, adding more particles do not solve the systematic 

shift issue. 

4.2. Effect of the number of trees 

The closer the robot goes next to the trees, the more 

important the effect of systematic shift, because less of 

the tree is seen at one time. Then, the amplitude of change 

of the coordinates of the center of the cluster is larger in 

this case. Thereby, a higher density of trees leads to a 

lower precision. Moreover, as already known in the 

context of SLAM, more landmarks induce more wrong 

data association. Finally, the total number of trees does 

not affect the update rate of the implementation, because 

only features in the lidar visibility scope are updated. 

Nevertheless, the denser the forest, the lower the update 

rate. 
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4.3. Future research 

As previously mentioned, a circle pattern recognition 

should be used to compute the coordinates of the trees 

from the lidar pointcloud, in order to remove the 

described systematic shift between the real and estimated 

poses. 

 In addition, resampled particles are here randomized 

to prevent particles deprivation, but more advanced 

methods exist such as mixture MCL, which is much more 

efficient in particular when motion noise dominates 

observation noise. 

 Finally, more experiments including real ones should 

be conducted to completely evaluate the approach 

described in this paper. 
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