
 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

Development of Haze Removing Hardware Using High-Level Synthesis

Daiki Shirai, Akira Yamawaki
1,2Department of Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku

Kitakyushu-shi, Fukuoka, Japan

E-mail: shirai.daiki885@mail.kyutech.jp, yama@ecs.kyutech.jp

Abstract

We have developed a hardware for low-power and high-speed haze removing to sharpen hazy images in battery-

powered embedded image processing systems such as drones. For development, we used HLS (High-Level Synthesis),

which automatically converts software into hardware. In this paper, we evaluate the performance and power

efficiency of the hardware obtained by high-level synthesis based on the haze removing software developed

considering the hardware specifications and show its effectiveness.

Keywords: Haze Removing, High-Level Synthesis, HLS, FPGA

1. Introduction

In recent years, the research and development of

embedded devices using image recognition has been very

active, and the market scale is rapidly expanding.

 Among them, the use of aerial images taken by

cameras mounted on drones and other UAV equipment is

attracting a lot of attention, and research and projects

related to it are being actively conducted. In Japan, where

infrastructure facilities are aging rapidly and the

workforce is shrinking, more and more facilities are

being inspected using aerial images from drones.

 In such cases, the aerial images are blurred by

weather and shooting conditions, making it impossible to

perform accurate inspections. In order to solve this

problem, we decided to develop an image processing

module that can be installed in the drone to remove the

haze generated in the captured images in real time.

 The module to be developed in this paper is a

hardware that executes the haze removing based on the

darkest channel priority method,1, 2 and high-level

synthesis is used for its development. In addition, to

ensure that the hardware to be developed has high

performance, we will also develop software programs

that describe the processing contents and modify the

algorithms in consideration of high-level synthesis.

 Finally, the effectiveness of the developed hardware

is demonstrated by comparing the hardware obtained by

high-level synthesis with pure software following the

original algorithm and software considering hardware.

2. Haze Removing

2.1. Dark channel priority method

The haze removing algorithm in this paper is based on

the dark channel priority method. Normally, when taking

pictures with a camera, skylighta hits an object, and the

light bounced off the object, called direct light, reaches

the camera to capture the image. On the other hand, if

haze or mist is present at the time of shooting due to

612

Daiki Shirai, Akira Yamawaki

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

weather or other factors, the skylight will be scattered by

the haze, creating what is called airglow. This

atmospheric light mixes with the direct light before it

reaches the camera, creating a haze in the captured image.

Based on these facts, the mechanism that causes haze

can be modeled by the following equation

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)). (1)

Here, 𝑥 is the entire shooting scene, 𝐽 is the direct

light from the object (the original clear image), 𝐴 is the

airglow (assumed to be constant throughout the shooting

scene), and 𝑡(0 < 𝑡 ≤ 1) is the transmittance (mixing of

direct light and skylight), 𝐴(1 − 𝑡(𝑥) is airglow, and 𝐼 is

the captured image (hazed image).

In order to obtain the original image, the above

equation is transformed into the following equation.

𝐽(𝑥) ≈
𝐼(𝑥) − �̃�(𝑥)

�̃�(𝑥)
+ �̃�(𝑥). (2)

Here, �̃� is an estimated value of skylight, and �̃� is an

estimated value of transmittance. By obtaining �̃� and �̃�,

direct light from objects, that is, the original clear image

can be obtained.

2.2. Flowchart of haze removing

The haze removing is divided into four stages: extraction

of skylight region, calculation of the skylight estimate,

calculation of the transmittance, and restoration of direct

light. In this section, these four processes will be

explained in broad terms (Fig. 1).

The first and second steps will be described together

as the skylight estimation process. Assuming that the

influence of skylight in the image is reflected in the

luminance, the luminance value is calculated by the RGB

value of each pixel. This is then subjected to a

minimization filter for each local region on the image

called a patch. The minimum value for each patch is

compared with the set threshold value, and if it exceeds

the threshold value, the entire patch is set as the skylight

region.

Since the next calculation of the skylight estimate

assumes that the value of skylight in the image is constant,

it is obtained by taking the average of the RGB values of

the estimated skylight region.

The third stage of transmittance estimation is

calculated using the following equation, which is

obtained by transforming equation (1)

�̃�(𝑥) ≈ 1 − 𝛼 min
𝑤∈𝛺(𝑥)

[min
𝐶∈{𝑅,𝐺,𝐵}

{
𝐼𝐶(𝑥)

�̃�𝐶
}]. (3)

Here, �̃� is the estimated transmittance and 𝛼(0 <

𝛼 ≤ 1) . From equation (3), the transmittance can be

calculated by implementing the darkest channel local

minimization filter on the normalized haze image and

finding the value adjusted by α to prevent it from

becoming extremely small.

In the final process of restoring scene radiance, we

use equation (2) based on the estimated skylight value

and transmittance. In this process, the denominator value

is adjusted so that the first term on the right side of

equation (2) does not become extremely large.

This is an overview of the haze removing based on

the darkest channel priority method, and the software

created based on this method is called pure software.

3. Haze Removing Software for HLS

3.1. HLS (High-level synthesis)

HLS automatically generates circuit data described

by HDL (Hardware Description Language) such as

Verilog from software program. While there are

advantages to using HLS, such as greatly reducing the

development time and the burden on developers, there

are several things to keep in mind.

For example, if the software input to the HLS uses

recursive functions or floating point, the circuit size of

Fig. 1. Flowchart of haze removing.

613

 Development of Haze Removing

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

the resulting hardware will be unnecessarily large, and

the performance will be low. Therefore, we design a

software program considering HLS based on the

flowchart described in Section 2.2, taking the above

points into account.

3.2. Software design considering HLS

For the skylight estimation process, which is the first and

second steps of haze removing, a software program for

HLS has been developed in a previous study and its

effectiveness has been confirmed3. Briefly there are three

major changes in the skylight estimation process for high

level synthesis: converting patch processing to pixel

processing, removal of the skylight region extraction map,

and finally, pipelining of the process. The patch

processing has been converted to pixel processing and the

skylight region extraction map has been removed. This

strategy gives a significant improvement in terms of

memory access for hardware. The pipelining of

processing plays a major role in improving the processing

performance of the hardware being generated.

For the third step, the transmittance estimation

process, we changed the method to perform the process

for each pixel as in the skylight estimation process

described above, as opposed to using the local minimum

value filter in the conventional method. In the case of the

conventional method using the local minimum filter, the

bandingb caused by this effect is repaired by applying a

smoothing process called soft matching. However, this

soft matching is complex and computationally expensive,

so implementing it in hardware would unnecessarily

increase the circuit size. In the proposed method, the

transmittance is estimated for each pixel instead of the

local minimum filter, and the restoration process can be

performed without smoothing and with maintaining the

hardware performance.

In the last step of restoring the scene radiance, the

calculation process was changed from the floating-point

method used in the conventional method to a fixed-point

method using unsigned 32-bit integers that can maintain

the minimum necessary accuracy. This calculation

method was applied in the same way in the transmittance

estimation process. This will reduce the circuit size of the

development hardware.

b Noise caused by discontinuities in transmittance at the borders of local

regions

Based on the above, we created a haze removing

software program considering HLS (hereafter referred to

as HLS software).

4. Experiments and Discussions

4.1. Experimental environment

The HLS software program created in Section 3.2 was

input to Xilinx's high-level synthesis tool Vivado HLS

2018.3 to perform high-level synthesis. Then, the HDL

program generated by high-level synthesis was loaded on

ZYBO (Zynq-7000 Development Board), an FPGA

board manufactured by DIGILENT, by using Vivado

2018.3, a development environment software for Xilinx

FPGAs, to verify the operation. The operating frequency

for each device is 2.9GHz for the PC, 650MHz for the

embedded CPU on the ZYBO board (hereafter referred

to as ZYBO CPU), and 100MHz for the developed

hardware, and the size of the input image used in the

experiment was 1024 x 768 pixels.

4.2. Experimental method

The performance of the HLS hardware was evaluated in

terms of the processing performance improvement ratio

and the runtime power improvement ratio for each of the

following four patterns, (i) pure software on PC, (ii) HLS

software on PC, (iii) pure software on ZYBO CPU, (iv)

HLS software on ZYBO CPU.

The processing performance improvement ratio is

calculated by determining the ratio of the processing

execution time in each case to the time required by the

HLS hardware for processing, and the runtime power

improvement ratio is obtained by multiplying the power

improvement ratio c by the processing performance

improvement ratio.4, 5

4.3. Experimental results and discussions

A graph summarizing the time required for the HLS

hardware and each of (i) through (iv) listed in Section 4.2

to perform the haze removing is shown in Fig. 3.

As can be seen from Figure 3, the HLS hardware

outperforms its execution time for all cases except (ii).

The processing time of the HLS hardware is slower for

c Ratio of the respective operating frequencies of the HLS hardware and

the case under comparison

614

Daiki Shirai, Akira Yamawaki

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

(ii), but this is probably due to the large difference in

operating frequency.

Fig. 4 shows the runtime power and performance

improvement ratios of the HLS hardware for each case.

As for the performance improvement ratio, since it

is a ratio of execution time, we were able to achieve

performance improvement for all cases except (ii). As for

the runtime power improvement ratio, even in the case of

(ii), where no performance improvement was achieved,

we were able to achieve a power improvement of

approximately 25.6 times.

5. Conclusion

We have developed a low-power and high-

performance hardware of the haze removal process using

high-level synthesis by restricting algorithm.

Although the HLS hardware could not even surpass

the processing time of the software used in HLS when

run on a PC, it was able to improve the runtime power

with almost no loss in processing performance.

In the future, we will actually mount the hardware

developed in this paper on a drone to verify its usefulness.

References

1. K. He et al: “Single Image Haze Removal Using Dark

Channel Prior. Proc.”, IEEE CVPR, Vol.1, pp.1956-1963,

2009

2. Hiroaki Kotera: “A color Correction for Degraded Scenes

by Air Pollution”, Journal of the Color Science

Association of Japan, Vol.40, No.2, pp. 49-59, 2016

3. D. Shirai, A. Yamawaki: “Hardware Development of

Skylight Estimation Processing in Haze Removing Using

High-level Synthesis”, ICIAE2021, pp107-111, 2021

4. M. Yamasaki et al: “Effect of Redundant Function

Execution to Reduce Memory Access on High-level

Synthesis”, Processing of the 6th IIAE International

Conference on Industrial Application Engineering 2018,

pp.206-209, 2018

5. M. Yamasaki, A. Yamawaki: “Description Method for

High-level Synthesis of Histogram Generation and Their

Evaluation”, IEIE Transactions on Smart Processing and

Computing, Vol. 8, No. 3, pp.178-185, 2019

Authors Introduction

Mr. Daiki Shirai

He received his bachelor’s degree

from Faculty of Engineering,

Department of Electrical and

Electronic Engineering, electronic

Systems Engineering Course,

Kyushu Institute of Technology,

Japan in 2020. He is currently a

master’s course student in Kyushu

Institute of Technology, Japan.

Dr. Akira Yamawaki

He is an Associate Professor of

Faculty of Engineering at Kyushyu

Institute of Technology in Japan. He

received his PhD. in Electrical

Engineering from the Graduate

School of Engineering, Kyushu

Institute of Technology, in 2006. His

reserch interest in Digital Circuit

Systems.

Fig. 3. Execution time of the haze removing in each case

Fig. 4. Runtime power and performance improvement ratio

615

https://ieeexplore.ieee.org/abstract/document/5567108
https://ieeexplore.ieee.org/abstract/document/5567108
https://ieeexplore.ieee.org/abstract/document/5567108
https://www.jstage.jst.go.jp/article/jcsaj/40/2/40_49/_article/-char/en
https://www.jstage.jst.go.jp/article/jcsaj/40/2/40_49/_article/-char/en
https://www.jstage.jst.go.jp/article/jcsaj/40/2/40_49/_article/-char/en
https://www2.ia-engineers.org/conference/index.php/iciae/iciae2021/paper/view/2418
https://www2.ia-engineers.org/conference/index.php/iciae/iciae2021/paper/view/2418
https://www2.ia-engineers.org/conference/index.php/iciae/iciae2021/paper/view/2418
https://www.semanticscholar.org/paper/Effect-of-Redundant-Function-Execution-to-Reduce-on-Yamasaki-Yonemitsu/b3c5504669eccaa2abda05a8c547721a331bcf23
https://www.semanticscholar.org/paper/Effect-of-Redundant-Function-Execution-to-Reduce-on-Yamasaki-Yonemitsu/b3c5504669eccaa2abda05a8c547721a331bcf23
https://www.semanticscholar.org/paper/Effect-of-Redundant-Function-Execution-to-Reduce-on-Yamasaki-Yonemitsu/b3c5504669eccaa2abda05a8c547721a331bcf23
https://www.semanticscholar.org/paper/Effect-of-Redundant-Function-Execution-to-Reduce-on-Yamasaki-Yonemitsu/b3c5504669eccaa2abda05a8c547721a331bcf23
https://www.semanticscholar.org/paper/Effect-of-Redundant-Function-Execution-to-Reduce-on-Yamasaki-Yonemitsu/b3c5504669eccaa2abda05a8c547721a331bcf23
https://www.researchgate.net/publication/334325780_Description_Method_for_High-level_Synthesis_of_Histogram_Generation_and_Their_Evaluation
https://www.researchgate.net/publication/334325780_Description_Method_for_High-level_Synthesis_of_Histogram_Generation_and_Their_Evaluation
https://www.researchgate.net/publication/334325780_Description_Method_for_High-level_Synthesis_of_Histogram_Generation_and_Their_Evaluation
https://www.researchgate.net/publication/334325780_Description_Method_for_High-level_Synthesis_of_Histogram_Generation_and_Their_Evaluation

