
 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

Hardware Development of Edge-Preserving Bubble Image Conversion in High-level Synthesis

Jiang Qin

Akira Yamawaki

Kyushu Institute of Technology

1-1 Sensui, Tobata, Kitakyushu 804-8550, Japan

E-mail: qin.jiang816@mail.kyutech.jp, yama@ecs.kyutech.ac.jp

Abstract

The non-photorealistic rendering, NPR, is widely used in social networking service on the mobile device. To realize

a real time NPR with low power making battery life of mobile device longer, we attempt to develop hardware module

by using high-level synthesis, HLS, converting software to hardware automatically. This research focuses on edge-

preserving bubble image, EPB, converting photos into image like filled with bubbles. We proposed a software

description method for EPB algorithm so that HLS can generate a high-performance and low-power hardware module.

Through the practical experiments, we show that our proposed description method can make HLS generate good

hardware module improving the performance and power efficiency compared with the conventional method.

Keywords: Non-photorealistic, rendering, hardware, high-level synthesis, buffer, FPGA.

1. Introduction

In recent years the opportunity to use non-photorealistic

rendering into a wide variety of images in social

networking services has been increasing. The global

market for embedded image processing systems has been

expanding rapidly due to the development of such social

networking services and measures taken by the Corona

disaster to remotely control them and is expected to

continue to increase in the future. In order to gain a large

market share for embedded image processing systems, it

is necessary to develop high-performance and power-

efficient image processing system products and introduce

them to the market as swiftly as possible.

There are two methods of realizing image processing:

hardware and software. Hardware-based processing is

desirable because of its higher performance and lower

power consumption. However, hardware processing has

the disadvantage of a long development period and a

large design burden.

In order to solve this problem, it is essential to

develop a software description method that can generate

efficient hardware by using a technology called High-

Level Synthesis (HLS)1-4, which automatically converts

software into hardware.

 In this work, we focus on the edge-preserving bubble

image, EPB, converting photos into image like filled with

bubbles. The EPB is one of non-photorealistic image

rendering processes5, which are conventionally

processed by software. We aim to develop a hardware

image processing system that is faster than conventional

methods by using HLS. This paper develops a software

description method so that HLS can generate good

hardware module.

2. Edge-preserving Bubble Image Conversion

Edge-preserving bubble transformation is a method to

generate an edge-preserving bubble image called EPB

(Edge-Preserving Bubble). Fig. 1 shows the overview of

this algorithm.

608

Jiang Qin, Akira Yamawaki

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

This algorithm takes a window on the input image as

well as spatial filters like mean, sobel, gaussian, and so

on. The average absolute brightness difference between

the opposite pixels of the processed image corresponds

to the edge of the target window, and the transformation

of the bubble image can be realized by repeatedly

increasing or decreasing the brightness value of the edge

equivalent part.

The EPB algorithm is implemented by an iterative

process consisting of two steps. The first step is to

compute the average absolute difference 𝑎𝑖,𝑗
(𝑡)

 in the

window by applying the target window of the processed

image to Eq. (1).

𝑎𝑖,𝑗
(𝑡)

=
∑ ∑ |𝑓𝑖+𝑘,𝑗+𝑙

(𝑡)
− 𝑓𝑖−𝑘,𝑗−𝑙

(𝑡)
|1

𝑙=−1
1
𝑘=−1

(2𝑊 + 1)2 − 1
 (1)

Where, all images to be processed in this study are

grayscale images. The 𝑓𝑖,𝑗
(𝑡)

 is the luminance value

of pixel (𝑖, 𝑗), 𝑡(= 1,2…) is the number of iterations.

The k and l are the positions in the window. Then

in step 2, all pixels in the process image are update

according to Eq. (2).

𝑓𝑖,𝑗
(𝑡+1)

= {
𝑓𝑖,𝑗 − 𝑏𝑎𝑖,𝑗

(𝑡)
 (𝑡%2 = 0)

𝑓𝑖,𝑗 − 𝑏𝑎𝑖,𝑗
(𝑡)

 (𝑡%2 = 1)
 (2)

Where, the 𝑏 is a positive constant, and % is the

remainder operator.

If 𝑓𝑖,𝑗
(𝑡+1)

is less than 0, 𝑓𝑖,𝑗
(𝑡+1)

 must be set to −𝑓𝑖,𝑗
(𝑡+1)

,

and furthermore, the pixel luminance value must be set

to 255. If 𝑓𝑖,𝑗
(𝑡+1)

 is greater than 255, then 𝑓𝑖,𝑗
(𝑡+1)

 must be

set to 255 +
255+(255−𝑓𝑖,𝑗

(𝑡+1)
)

𝑏
.

The process of steps 1 and 2 is to be repeated T times

for all pixels in the photographic image, and the image

composed of the new pixels is the edge-preserving

bubble image.

3. Develop of Software Program for HLS

To create efficient hardware, each pixel of the processed

image should be read and processed one by one, so that

data is continuously fed into the system at each clock

cycle, and high-speed processing is achieved through

pipelining. To achieve this performing a window-based

process, we use a buffer as shown in Fig. 2, and generate

the ideal hardware using high-level synthesis. By using

Fig. 1 EPB Algorithm Overview

Fig. 2 Buffer Usage for Window Processing

Fig. 3 Pseudo Source Code for HLS

609

 Hardware Development of Edge-preserving

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

three buffers, the memory accesses are performed one by

one pixel continuously while performing window

processing. Fig. 3 shows the overview of the software

programming code we developed for HLS.

4. Experiment and Discussion

4.1. Experimental Setup

We done the experiments on the real prototype system

built on FPGA. We used HLS tool is Xilinx Vitis HLS

2021.1. The hardware generated is implemented on the

ZYNQ FPGA. We measured the performance on ZYBO

which is an FPGA board with ZYNQ FPGA.

The images used in the experiment are shown in Fig

4 (a). It is a BMP file image of size 427 in height and 460

in width. The output images are also shown in Fig. 4(b)-

(d) with the iteration number of 3, 4 and 5.

As comparable evaluations, we prepared three

versions: software execution on PC, software execution

on embedded processor in FPGA, hardware execution in

FPGA. The processor of PC is Core i5 at 3.7GHz. The

embedded processor is Cortex A9 at 650MHz. The HLS

hardware modules run at 100MHz in FPGA.

4.2. Effect of Software Restructuring

To clarify the effect of software restructure introduced to

make memory access perform one pixel by one pixel, we

compare the reports output by the HLS tools. Fig. 5

shows the results that HLS tool converted the pure

software intuitively implementing the algorithm and the

restructured software considering hardware

characteristic shown in Fig. 3.

For pure software, the HLS generated a poor

hardware module just produces 1 data per 10 clocks. It is

not optimum pipelined data path. In contrast, the HLS

can generate the well-organized hardware module with

optimum pipelined data path outputting 1 data per 1 clock

from the restructured software programming code.

4.3. Performance Evaluation

Fig. 6 shows the measured execution time of PC,

embedded processor and FPGA respectively.

Based on Fig. 6, we confirmed that the hardware

execution time was reduced by a factor of about 5 and 13

compared to the software execution time on the computer

and that on the embedded processor respectively. Our

hardware module generated by HLS from software code

restricted can achieve a significant performance

improvement compared with the software execution.

Fig. 4 Input and output Image

Fig. 6 Execution Time

Fig. 5 HLS Result

610

Jiang Qin, Akira Yamawaki

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

4.4. Power Efficiency Estimation

To investigate a power efficiency about hardware

module compared to the software execution, we

estimate a operating power efficiency by Eq. (3).

 Fig.7 shows the power efficiency estimated by the

measured values shown in Fig. 6 and Eq. (3). This result

shows that the hardware module generated by HLS from

out restricted software can achieve a significant power

efficiency compared to the software execution on PC and

embedded processor.

5. Conclusion

In this paper, we focused on speeding up the EPB

bubble image conversion system and developed a

software description method to generate efficient

hardware by high-level synthesis. In this study, we

developed a software description method to generate

efficient hardware by high-level synthesis. When the

hardware generated by high-level synthesis was

compared with the software, it was confirmed that the

power efficiency was also greatly improved. Furthermore,

when compared to the execution on an embedded

processor, the performance was also improved.

Considering these points, we can conclude that the

proposed method is an effective method for embedded

image processing systems that require high-speed

processing with low power consumption.

References

1. Shinya TAKAMAEDA, “Hardware Design with High

Level Synthesis : Custom FPGA Computer Development

Is Available to Everyone,” Journal of the Institute of

Electronics, Information and Communication Engineers,

Vol.100, No.2, pp. 103-108 (2017) in Japanese.

2. Nane R, Sima VM, Olivier B, Meeuws R, Yankova Y, and

Bertels K, “DWARV 2.0: a CoSy-based C-to-VHDL

hardware compiler,” In Proceedings of 22nd international

conference on field programmable logic and applications,

Oslo, Norway, 29–31 August 2012, pp 619–622.

3. Pilato C and Ferrandi F, “Bambu: a modular framework

for the high-level synthesis of memory-intensive

applications,” In: Proceedings of 23rd international

conference on field programmable logic and applications,

Porto, Portugal, 2–4 September 2013, pp. 1–4.

4. Canis A, Choi J, Aldham M, Zhang V, Kammoona A,

Anderson JH, Brown S, and Czajkowski T, “LegUp: high-

level synthesis for FPGA-based processor/accelerator

systems,” In: Proceedings of the 19th ACM/SIGDA

international symposium on field programmable gate

Arrays, Monterey, CA, USA, 27 February–1 March 2011,

pp 33–36.

5. Toru HIRAOKA, “A High-Speed Method for Generating

Edge-Preserving Bubble Images” IEICE TRANS. INF &

SYST. VOL.E103-D, NO.3 MARCH 2020.

Authors Introduction

Ms. Jiang Qin

She entered the department of

Electrical and Electronic Engineering,

Faculty of Engineering, Kyushu

Institute of Technology in 2018. She is

now pursuing her B.E. study at the

same university. Her current research

interests are in Hardware development

of image conversion.

Dr. Akira Yamawaki

He is an Associate Professor of

Faculty of Engineering at Kyushyu

Institute of Technology in Japan. He

received his PhD. in Electrical

Engineering from the Graduate School

of Engineering, Kyushu Institute of

Technology, in 2006. His reserch

interest in Digital Circuit Systems.

Fig. 7 Power Efficiency

611

https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/31/0/31_151/_article/-char/ja
https://www.flir.com/products/flea3-usb3/
https://www.flir.com/products/flea3-usb3/
https://www.flir.com/products/flea3-usb3/
https://www.flir.com/products/flea3-usb3/
https://www.flir.com/products/flea3-usb3/
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://www.jstage.jst.go.jp/article/fss/32/0/32_397/_article/-char/ja
https://dl.acm.org/doi/book/10.5555/534133
https://dl.acm.org/doi/book/10.5555/534133
https://dl.acm.org/doi/book/10.5555/534133

