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Abstract 

The Piecewise Quadratic Neuron (PQN) model is a spiking neuron model that can be efficiently implemented on 

digital arithmetic circuits. In addition, this model can reproduce a variety if neuronal activities precisely with 

optimized parameter sets. In previous studies, we have optimized the parameters using meta-heuristic methods, which 

required a lot of computational time. In this paper, we proposed an parameter fitting method that takes into account 

the mathematical structure of the model and reproduces the electrophysiological activities of a target neuron with less 

computational time. We expect that this method can be used to construct silicon neuronal networks that faithfully 

replicate the nervous system. This method is expected to applicable to building silicon neuronal networks that 

faithfully replicate the nervous system. 
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1. Introduction

The nervous system makes it possible for animals to

process a variety of complex information. The silicon 

neuronal network (SNN) aims to achieve this information 

processing with low power consumption by mimicking 

the structure of the nervous system. The SNN is 

composed of the silicon neurons [1][2], which are digital 

or analog circuit units that simulates neuronal activities 

by solving the spiking neuron models. A variety of 

spiking neuron models have been used for the silicon 

neurons due to a trade-off between the reproducibility of 

neuronal activity and computational efficiency. For 

example, previous studies [3][4] used the ionic-

conductance models. While these models can reproduce 

neuronal activities accurately, a large number of 

resources are required for the circuit implementation. On 

the other hand, integrate-and-fire (I&F)-based models are 

also widely used [5][6]. In I&F-based models, the 

variable corresponding to the membrane potential is reset 

to emulate the spike process when the neuron fires. This 

resetting has the advantage of low implementation cost, 

but makes the reproducibility of neuronal activities less 

than that of the ionic-conductance models. 

We have proposed the Piecewise Quadratic Neuron 

(PQN) model, which is also known as the digital spiking 

silicon neuron models [7][8][9]. The feature of this 
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model is that it uses piecewise quadratic functions. This 

model does not have a cubic term unlike other neuron 

models e.g. the FitzHugh-Nagumo [10] model and the 

Hindmarsh-Rose model [11], and can be implemented on 

the digital circuit with less circuit resources. In previous 

studies [12][13][14], the network containing the PQN 

model was constructed on a field-programmable gate 

array (FPGA) chip and the associative memory tasks 

were performed. In addition, the parameter fitting 

methods based on the meta-heuristic approach were 

proposed in previous studies [15][16], but they required 

a huge amount of computational time [17].  

In this work, we propose the parameter fitting method 

focusing on the mathematical structure of the PQN model. 

And this method is applied to electrophysiological 

experimental data publicated in [18]. While the previous 

study [17] took several hours to determine the parameters, 

this method obtains the parameters within one minute. 

The remainder of this paper is organized as follows. 

Section 2 explains about equations and the parameter 

fitting method for the PQN model. The results of 

parameter fitting are shown in Section 3 and the work is 

concluded in Section 4. 

 

2. Methods 

2.1. PQN model 

Equations of the PQN model are given by 

where v is a state variable corresponding to the neuronal 

membrane potential. n is a recovery variable. Parameters 

φ and τ control time constants of variables. Istim 

represents the input stimulus and parameter I0 is a bias 

current. Parameters 𝑎𝑥 , 𝑏𝑥, 𝑐𝑥 and rg, where x is fp, fn, gp, 

or gn, control the shapes of the v- and n-nullclines. 

Parameters b𝑓𝑝 , c𝑓𝑝, b𝑔𝑝  and c𝑔𝑝  are determined so that 

the nullclines are continuous and smooth. 

 

2.2. Parameter fitting 

Figure 1 shows an example of neuronal activities 

simulated by the PQN model in response to a sustained 

current stimulus. In this study, for the efficient parameter 

fitting, we focus on these three features of the spike 

waveform: the distance from the minimum value to the 

threshold, the distance from the maximum value to the 

threshold, and the inter-spike interval. We defined the 

threshold as the value of the point at which the slope 

changes most rapidly before and after. The values of 

these three features are dependent on these three 

parameters, 𝑎𝑓𝑛, ϕ, and 𝐼0, respectively (Fig. 2). The 𝑎𝑓𝑛 

controls a slope of the v-nullcline where v is less than 0. 

For example, when 𝑎𝑓𝑛 is increased, the slope becomes 

larger and the distance from the minimum value to the 
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threshold becomes shorter (Fig. 2(a)). Note that when 

𝑎𝑓𝑛 is changed, 𝑎𝑔𝑛, 𝑏𝑓𝑛, 𝑏𝑔𝑛, 𝑐𝑓𝑛, and 𝑐𝑔𝑛 are modified 

according to the following equation in order to minimize 

the effect on other features as much as possible. 

where r is the rate of change in 𝑎𝑓𝑛 and x’, where x is 𝑎𝑓𝑛, 

𝑎𝑔𝑛, 𝑏𝑓𝑛, 𝑏𝑔𝑛, 𝑐𝑓𝑛, or 𝑐𝑔𝑛, means the value of x after this 

modification. The distance from the maximum value 

tothe threshold is dependent on ϕ. Figure 2(b) shows that 

as ϕ is increased the amplitude is also increased. In  

addition, by increasing 𝐼0 , the inter-spike interval 

becomes smaller (Fig. 2(c)).  

In the process of the parameter fitting, we firstly 

tuned 𝑎𝑓𝑛  by comparing the difference from the 

minimum value to the threshold. Then, ϕ is tuned in order 

to adjust the distance from the maximum value to the 

threshold. Finally, the inter-spike interval is fit by 

changing 𝐼0. We repeated this procedure three times, and 

totally required 55.4 seconds in average. In this 

experiment, we used the computer with Intel Core i7-

8700 CPU. And cython library (version 0.29.24) was 

used in the source code. 

 

3. Results 

Figure 3 compares the initial waveform and the 

waveform simulated by obtained parameters. Table 1 

shows the mean squared error (MSE) between 

electrophysiological data and simulated data for three 

neurons in [20]. MSE is given by: where T is the number 

of 

time 

steps. 𝑉measured(𝑡)   and 𝑉PQN(𝑡)  are values of 

measurement and simulated data at time t, respectively. 

In all three data, the value of MSE became smaller than 

before the parameter fitting. 

  

4. Conclusion 

In this work, we proposed the parameter fitting method 

focusing on the mathematical structure of the PQN model. 

And we used this method to reproduce the 

electrophysiological data of three different neurons. The 

results showed that the MSE were reduced through the 

fitting. In our future work, we will study how the 

parameters effect on the time from the start of the spike 

until the spike reaches the highest point and the time from 

the spike reaching its highest point until it reaches the 

minimum value. By fitting these times, MSE is expected 

to be more reduced.   

5. Appendix 
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