
 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

INT8 Activation Ternary or Binary Weights Networks

Ninnart Fuengfusin

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,

2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan
Hakaru Tamukoh

Research Center for Neuromorphic AI Hardware,

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,

2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan

E-mail: fuengfusin.ninnart553@mail.kyutech.jp*, tamukoh@brain.kyutech.jp

 https://www.brain.kyutech.ac.jp/~tamukoh/

Abstract

We propose binary or ternary weights with 8-bit integer activation convolutional neural networks. This model is

designed as a middle ground between 8-bit integer and 1-bit or 2-bit quantized models. We discover that conventional

1-bit or 2-bit only-weight quantization methods (i.e., BinaryConnect and Ternary weights network) can be utilized

jointly with 8-bit integer activation quantization without significant fractions. Based on these two methods, we

evaluate our model with a VGG16-like model and CIFAR10 dataset. Our model provides competitive results to a

conventional floating-point model.

.Keywords: Quantization, Image Recognition, Model Compression

1. Introduction

With the invention of deep learning, the neural network

(NN) has achieved a better performance than human

experts, especially in the image recognition task [1].

However, to perform well, the NN must have a large

number of parameters. Moreover, to deploy this model

into mobile or edge devices in real-time processing is a

challenge from several constraints: the device’s low

computational capacity, memory bandwidth, and others.

One of the methods to reduce the computational time

is to convert the 32-bit floating-point (FP32) operations

into easier to compute formats such as the fixed-point,

integer, or other formats. This process is called

quantization. Currently, the default quantization

technique supported by major deep learning frameworks

(i.e., PyTorch [2] and TensorFlow [3]) is an 8-bit integer

(INT8) quantization [4]. In general, INT8 quantization

transforms almost all FP32 parameters to INT8 via an

affine transformation. The conversion allows the model

to operate with only INT8 operations faster than FP32

operations. For instance, in NVIDIA Ampere

architecture, NVIDIA A100 delivers around 32 times the

number of INT8 operations per second compared to the

number of FP32 operations that A100 can perform [5].

Furthermore, INT8 also reduces NN's overall memory

footprint by factors of four compared with FP32.

To reduce bit-width to less than 8-bit, several

researches show that 1 or 2-bit quantization is possible [6,

7] with some degree of loss in the model performance. In

this lower-bit width quantization researches, researches

can be categorized into quantizing only-weights and

quantizing both weights and activation directions. In

general, the quantized only-weight model performs better

but consumes higher latency and hardware resources if

implemented into the hardware.

We propose an INT8 Activation Ternary or Binary

Weights Networks (ITBWN) model to lower bundles of

599

Ninnart Fuengfusin, Hakaru Tamukoh

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

the only-weight quantized model. ITBWN is based on a

lower-bit width quantization method; however, we also

utilize INT8 based quantization method to quantize the

model’s activations. This reduces overall hardware

resource utilization and latency of only-weight quantized

model. Furthermore, we show that both INT8 and lower-

bit width quantization methods can be utilized jointly

with competitive performance to floating-point model

2. Related Works

In this section, we cover two related work sections:

INT8 quantization and lower-bit quantization related

researches.

2.1. INT8 Quantization

INT8 quantization research problem is framed as how to

map between floating-point to INT8 variables. In [4], a

floating-point tensor is approximated using an affine

transform with floating-point scaling factors S, 8-bit

unsigned integer (UINT8) zero-points Z, and an INT8

tensor q, as shown in Eq. (1). A number variable of S and

Z is either a number of channels of r (per-channel

quantization) or a scalar (per-tensor quantization).

The optimal 𝑆 and 𝑍 can be found by tracking statistical

information (i.e., a minimum and maximum value)

during the training or inference. To further reduce more

complexity of this approximation, TQT [8] proposed to

remove zero-point variables Z and affects Eq. (1) to

become Eq. (2). In Eq. (2), TQT designs S as a scaler

variable with the power-of-two quantization. This allows

for replacing floating-point multiplication with shift-

operations between S and q.

In contrast, instead of using statistical information, TQT

uses a training process with a straight-through estimator

[9] to decide on S and t threshold values. t is used to clip

minimum and maximum values of r before using Eq. (2).

There are several TQT implementation. One of them

Xilinx Brevitas [10] provides an easy-to-use PyTorch

implementation of TQT.

2.2. Lower-bit Quantization

BinaryConnect (BC) [6] and Ternary Weight Networks,

both (TWN) [7] are only-weight and lower-bit

quantization methods. BC converts weights 𝑤 into

binary weights 𝑤𝑞 using Eq. (3).

To make this BC trainable with Eq. (3) which discretizes

the gradient to 𝑤 , Eq. (4) transfers the gradient from

quantized weights to floating-point weights. Eq. (4)

makes Eq. (3) the same as the identity function during

back-propagation.

TWN quantizes weights 𝑤 into either {– 𝑆, 0, 𝑆 } with

Eq. (5) where S and 𝛥 are both positive floating-point

variables. TWN applies Eq. (4) to make the model

trainable with Eq. (5).

𝛥 can be found as Eq. (6). Where 𝑬 is an expected value

or mean-average of |𝑤|.

𝑆 can be found as Eq. (7). Eq. (7) can be summarized as

mean-average of |𝑤| that have values more than 𝛥.

3. INT8 Activation Ternary or Binary Weights

Networks

In only-weight quantized model, the multiplication

between floating-point activations and binary {-1, 1} or

ternary weights {-1, 0, 1} can be done using only logic

gates [11]. However, in [11], the accumulation of feature

maps still requires floating-point accumulations. The

𝑟 = 𝑆(𝑞 − 𝑍) (1)

𝑟 = 𝑆(𝑞) (2)

𝑤𝑞 = 𝑠𝑖𝑔𝑛(𝑤) (3)

𝜕𝐿

𝜕𝑤
=

𝜕𝐿

𝜕𝑤𝑞

(4)

𝑤𝑞 = {
𝑆: 𝑤 > 𝛥

0: |𝑤| ≤ 𝛥
−𝑆: 𝑤 < −𝛥

(5)

𝛥 = 0.7 × 𝑬(|𝑤|) (6)

𝑆 = 𝑬𝒊∈{𝒊||𝑤𝑖|>𝛥 }(|𝑤𝑖|) (7)

600

INT8 Activation Ternary or

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

motivation of ITBWN is to improve [11] by reducing the

complexity of this floating-point accumulation.

Converting all activation into INT8 reduces the floating-

point accumulation into INT8 accumulation instead. A

less complex INT8 datatype reduces overall the

computational time. Since INT8 methods are based on

approximating floating-point variables, well-have INT8

approximation should behave the same as the floating-

point variable.

With this motivation in mind, ITBWN jointly utilizes

methods from TQT, BC, and TWN together. ITBWN

applies TWN or BC to quantize its weights; however, for

its activations, ITBWN uses TQT. An overview of the

datatypes in a block of ITBWN model is shown in Fig. 1.

Fig. 1. Overview of datatypes in a block of ITBWN.

Where a is the activation, w is weights or both weights

and biases, UINT8 represents 8-bit unsigned-integer.

In this work, there are some modifications to BC, TWN,

and TQT. For BC, we do not use clip functions to clip the

weights to a range of [-1, 1]. For TWN, we did not use

any scaling factors S. For TQT, we utilize a default

implementation from Xilinx Brevitas, which has minor

differences with the TQT setting [12]. Notable

differences are Brevitas default settings do not use

power-of-two quantization to the scaling factor, and

Brevitas applies a different method to initialize the scale

factor. At last, we use neither BC, TWN, nor TQT

method in the last layer because it may affect the model's

performance.

4. Experimental Results and Discussion

In this section, we conducted an experiment with the

CIFAR10 dataset. We utilized a model based on VGG-

16 [13]. To make VGG-16 operates with the CIFAR10

dataset, we removed the first two fully-connected layers

and adjusted a number of input neurons in the last fully-

connect layer to 512. We set the hyper-parameters of this

experiment as shown in Table 1.

Table 1 Hyper parameters for VGG-16 in CIFAR10 setting.

Hyper

Parameters

Value

Epoch 200

Batch size 256

Weight decay 0.0005

Learning rate 0.1

We preprocessed images with mean and standard

deviation from each channel of RGB of training dataset.

We applied the data augmentation as follows. During the

training, the image was padded with zeros to its boundary

and randomly cropped back to the original size. Each

image was also randomly horizontally flipped. The

stochastic gradient descent with momentum is selected to

optimize our models. Finally, the learning rate is reduced

with Cosine annealing [14].

We set notations as follows: binary for BC with TQT,

ternary for TWN with TQT, int8 for TQT only, and float

for all FP32 floating-point model. The test accuracy over

training epochs of each model is shown in Fig. 2. The

best test accuracy of each model is shown in Table 2.

Fig. 2. Test accuracies of different methods per the training

epoch.

Table 2 The best accuracy of VGG16 with different

quantization methods.

Model Test

Accuracy

binary 0.9269

ternary 0.9351

int8 0.9353

float 0.9389

601

Ninnart Fuengfusin, Hakaru Tamukoh

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

In this experiment, we found that float provides the best

test accuracy; however ternary and int8 also provide

competitive results to float, which is quite surprising. In

terms of binary, it gives the worst test accuracy. Further

analysis of these outcomes, we scope them as future work.

5. Conclusion

We proposed ITBWN or a BC or TWN model with an

INT8 quantized activations. Our experiment shows

ITBWN with ternary weights provides the competitive

result to both INT8 quantized and floating-point models.

Converting floating-point activation into INT8 with TQT

allows only-weight quantized model to deploy in

hardware without worrying about the cost of floating-

point accumulation.

For future work, we planned to further analyze why

the performance between ternary and int8 is so close to

each other. We also would like to find why binary drops

a high amount of test accuracy compared to ternary while

only 1-bit differs.

Acknowledgements

This research is based on results obtained from a project,

JPNP16007, commissioned by the New Energy and

Industrial Technology Development Organization

(NEDO).

References

1. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

"Deep residual learning for image recognition."

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770-778. 2016.

2. Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen et al.

"Pytorch: An imperative style, high-performance deep

learning library." Advances in neural information

processing systems 32 (2019): 8026-8037.

3. Abadi, Martín. "TensorFlow: learning functions at scale."

In Proceedings of the 21st ACM SIGPLAN International

Conference on Functional Programming, pp. 1-1. 2016.

4. Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong

Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and

Dmitry Kalenichenko. "Quantization and training of

neural networks for efficient integer-arithmetic-only

inference." In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2704-2713.

2018.

5. NVIDIA A100 Tensor Core GPU Architecture, Accessed

December 13, 2021, https://images.nvidia.com/aem-

dam/en-zz/Solutions/data-center/nvidia-ampere-

architecture-whitepaper.pdf.

6. Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre

David. "Binaryconnect: Training deep neural networks

with binary weights during propagations." In Advances in

neural information processing systems, pp. 3123-3131.

2015.

7. Li, Fengfu, Bo Zhang, and Bin Liu. "Ternary weight

networks." arXiv preprint arXiv:1605.04711 (2016).

8. Jain, Sambhav R., Albert Gural, Michael Wu, and Chris H.

Dick. "Trained quantization thresholds for accurate and

efficient fixed-point inference of deep neural

networks." arXiv preprint arXiv:1903.08066 (2019).

9. Bengio, Yoshua, Nicholas Léonard, and Aaron Courville.

"Estimating or propagating gradients through stochastic

neurons for conditional computation." arXiv preprint

arXiv:1308.3432 (2013)

10. Pappalardo, Alessandro. Xilinx/brevitas. Zenodo, 2021.

https://doi.org/10.5281/zenodo.3333552.

11. Fuengfusin, Ninnart, and Hakaru Tamukoh. "Mixed-

precision weights network for field-programmable gate

array." PloS one 16, no. 5 (2021): e0251329.

12. Cite to quantization techniques in

QuantIdentity(bit_width=8) and QuantReLU(bit_width=8)

Accessed December 13, 2021,

https://github.com/Xilinx/brevitas/issues/370.

13. Simonyan, Karen, and Andrew Zisserman. "Very deep

convolutional networks for large-scale image

recognition." arXiv preprint arXiv:1409.1556 (2014)

14. Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic

gradient descent with warm restarts." arXiv preprint

arXiv:1608.03983 (2016).

Authors Introduction

Dr. Ninnart Fuengfusin

He received his B.Eng. degree from

King Mongkut's University of

Technology Thonburi, Thailand, in

2016. He received his M.Eng. and

D.Eng degrees from Kyushu Institute

of Technology, Japan, in 2018 and

2021, respectively. Currently, he is a

post-doctoral researcher at the

Kyushu Institute of Technology,

Japan. His research interests include

deep learning, efficient neural network design, and digital

hardware design.

602

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1605.04711
https://arxiv.org/abs/1903.08066
https://arxiv.org/abs/1903.08066
https://arxiv.org/abs/1903.08066
https://arxiv.org/abs/1903.08066
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.1371/journal.pone.0251329
https://doi.org/10.1371/journal.pone.0251329
https://doi.org/10.1371/journal.pone.0251329
https://github.com/Xilinx/brevitas/issues/370
https://github.com/Xilinx/brevitas/issues/370
https://github.com/Xilinx/brevitas/issues/370
https://github.com/Xilinx/brevitas/issues/370
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983

INT8 Activation Ternary or

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

 Prof. Hakaru Tamukoh

He received the B.Eng. degree from

Miyazaki University, Japan, in 2001.

He received the M.Eng. and the PhD

degree from Kyushu Institute of

Technology, Japan, in 2003 and

2006, respectively. He was a

postdoctoral research fellow of 21st

century center of excellent program

at Kyushu Institute of Technology,

from 2006 to 2007. He was an

Assistant Professor of Tokyo University of Agriculture and

Technology, from 2007 to 2013. He is currently an

Associate Professor in the Graduate School of Life Science

and System Engineering, Kyushu Institute of Technology,

Japan. His research interest includes hardware/software

complex system, digital hardware design, neural networks,

soft-computing and home service robots. He is a member

of IEICE, SOFT, JNNS, IEEE, JSAI and RSJ.

603

