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Abstract 

We propose binary or ternary weights with 8-bit integer activation convolutional neural networks. This model is 

designed as a middle ground between 8-bit integer and 1-bit or 2-bit quantized models. We discover that conventional 

1-bit or 2-bit only-weight quantization methods (i.e., BinaryConnect and Ternary weights network) can be utilized 

jointly with 8-bit integer activation quantization without significant fractions. Based on these two methods, we 

evaluate our model with a VGG16-like model and CIFAR10 dataset. Our model provides competitive results to a 

conventional floating-point model. 

.Keywords: Quantization, Image Recognition, Model Compression   

1. Introduction

With the invention of deep learning, the neural network 

(NN) has achieved a better performance than human 

experts, especially in the image recognition task [1]. 

However, to perform well, the NN must have a large 

number of parameters. Moreover, to deploy this model 

into mobile or edge devices in real-time processing is a 

challenge from several constraints: the device’s low 

computational capacity, memory bandwidth, and others. 

One of the methods to reduce the computational time 

is to convert the 32-bit floating-point (FP32) operations 

into easier to compute formats such as the fixed-point, 

integer, or other formats. This process is called 

quantization. Currently, the default quantization 

technique supported by major deep learning frameworks 

(i.e., PyTorch [2] and TensorFlow [3]) is an 8-bit integer 

(INT8) quantization [4]. In general, INT8 quantization 

transforms almost all FP32 parameters to INT8 via an 

affine transformation. The conversion allows the model 

to operate with only INT8 operations faster than FP32 

operations. For instance, in NVIDIA Ampere 

architecture, NVIDIA A100 delivers around 32 times the 

number of INT8 operations per second compared to the 

number of FP32 operations that A100 can perform [5]. 

Furthermore, INT8 also reduces NN's overall memory 

footprint by factors of four compared with FP32. 

To reduce bit-width to less than 8-bit, several 

researches show that 1 or 2-bit quantization is possible [6, 

7] with some degree of loss in the model performance. In

this lower-bit width quantization researches, researches 

can be categorized into quantizing only-weights and 

quantizing both weights and activation directions. In 

general, the quantized only-weight model performs better 

but consumes higher latency and hardware resources if 

implemented into the hardware. 

We propose an INT8 Activation Ternary or Binary 

Weights Networks (ITBWN) model to lower bundles of 
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the only-weight quantized model. ITBWN is based on a 

lower-bit width quantization method; however, we also 

utilize INT8 based quantization method to quantize the 

model’s activations. This reduces overall hardware 

resource utilization and latency of only-weight quantized 

model. Furthermore, we show that both INT8 and lower-

bit width quantization methods can be utilized jointly 

with competitive performance to floating-point model 

2. Related Works 

In this section, we cover two related work sections: 

INT8 quantization and lower-bit quantization related 

researches. 

2.1. INT8 Quantization 

INT8 quantization research problem is framed as how to 

map between floating-point to INT8 variables. In [4], a 

floating-point tensor is approximated using an affine 

transform with floating-point scaling factors S, 8-bit 

unsigned integer (UINT8) zero-points Z, and an INT8 

tensor q, as shown in Eq. (1). A number variable of S and 

Z is either a number of channels of r (per-channel 

quantization) or a scalar (per-tensor quantization). 

 

 

The optimal 𝑆 and 𝑍 can be found by tracking statistical 

information (i.e., a minimum and maximum value) 

during the training or inference. To further reduce more 

complexity of this approximation, TQT [8] proposed to 

remove zero-point variables Z and affects Eq. (1) to 

become Eq. (2). In Eq. (2), TQT designs S as a scaler 

variable with the power-of-two quantization. This allows 

for replacing floating-point multiplication with shift-

operations between S and q. 

 

 

In contrast, instead of using statistical information, TQT 

uses a training process with a straight-through estimator 

[9] to decide on S and t threshold values. t is used to clip 

minimum and maximum values of r before using Eq. (2). 

There are several TQT implementation. One of them 

Xilinx Brevitas [10] provides an easy-to-use PyTorch 

implementation of TQT. 

2.2. Lower-bit Quantization 

BinaryConnect (BC) [6] and Ternary Weight Networks, 

both (TWN) [7] are only-weight and lower-bit 

quantization methods. BC converts weights 𝑤  into 

binary weights 𝑤𝑞  using Eq. (3). 

 

 

To make this BC trainable with Eq. (3) which discretizes 

the gradient to  𝑤 , Eq. (4) transfers the gradient from 

quantized weights to floating-point weights. Eq. (4) 

makes Eq. (3) the same as the identity function during 

back-propagation. 

 

 

TWN quantizes weights 𝑤 into either {– 𝑆, 0, 𝑆 } with 

Eq. (5) where S and 𝛥 are both positive floating-point 

variables. TWN applies Eq. (4) to make the model 

trainable with Eq. (5). 

 

 

𝛥 can be found as Eq. (6). Where 𝑬 is an expected value 

or mean-average of |𝑤|.  
 

 
𝑆 can be found as Eq. (7). Eq. (7) can be summarized as 

mean-average of |𝑤| that have values more than 𝛥. 

 

 

3. INT8 Activation Ternary or Binary Weights 

Networks 

In only-weight quantized model, the multiplication 

between floating-point activations and binary {-1, 1} or 

ternary weights {-1, 0, 1} can be done using only logic 

gates [11]. However, in [11], the accumulation of feature 

maps still requires floating-point accumulations. The 

𝑟 = 𝑆(𝑞 − 𝑍)  (1) 

𝑟 = 𝑆(𝑞)  (2) 

𝑤𝑞 = 𝑠𝑖𝑔𝑛(𝑤)  (3) 

𝜕𝐿

𝜕𝑤
=  

𝜕𝐿

𝜕𝑤𝑞
 

(4) 

𝑤𝑞 =  {
𝑆: 𝑤 >  𝛥

0: |𝑤| ≤  𝛥
−𝑆: 𝑤 <  −𝛥

 
 

(5) 

𝛥 = 0.7 × 𝑬(|𝑤|) (6) 

𝑆 = 𝑬𝒊∈{𝒊||𝑤𝑖|>𝛥 }(|𝑤𝑖|) (7) 
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motivation of ITBWN is to improve [11] by reducing the 

complexity of this floating-point accumulation. 

Converting all activation into INT8 reduces the floating-

point accumulation into INT8 accumulation instead. A 

less complex INT8 datatype reduces overall the 

computational time. Since INT8 methods are based on 

approximating floating-point variables, well-have INT8 

approximation should behave the same as the floating-

point variable. 

With this motivation in mind, ITBWN jointly utilizes 

methods from TQT, BC, and TWN together. ITBWN 

applies TWN or BC to quantize its weights; however, for 

its activations, ITBWN uses TQT. An overview of the 

datatypes in a block of ITBWN model is shown in Fig. 1. 

 

 

Fig. 1. Overview of datatypes in a block of ITBWN. 

Where a is the activation, w is weights or both weights 

and biases, UINT8 represents 8-bit unsigned-integer.  

In this work, there are some modifications to BC, TWN, 

and TQT. For BC, we do not use clip functions to clip the 

weights to a range of [-1, 1]. For TWN, we did not use 

any scaling factors S. For TQT, we utilize a default 

implementation from Xilinx Brevitas, which has minor 

differences with the TQT setting [12]. Notable 

differences are Brevitas default settings do not use 

power-of-two quantization to the scaling factor, and 

Brevitas applies a different method to initialize the scale 

factor. At last, we use neither BC, TWN, nor TQT 

method in the last layer because it may affect the model's 

performance. 

 

4. Experimental Results and Discussion 

In this section, we conducted an experiment with the 

CIFAR10 dataset. We utilized a model based on VGG-

16 [13]. To make VGG-16 operates with the CIFAR10 

dataset, we removed the first two fully-connected layers 

and adjusted a number of input neurons in the last fully-

connect layer to 512. We set the hyper-parameters of this 

experiment as shown in Table 1. 

 

Table 1 Hyper parameters for VGG-16 in CIFAR10 setting. 

Hyper 

Parameters 

Value 

Epoch 200 

Batch size 256 

Weight decay 0.0005 

Learning rate 0.1 

 

We preprocessed images with mean and standard 

deviation from each channel of RGB of training dataset. 

We applied the data augmentation as follows. During the 

training, the image was padded with zeros to its boundary 

and randomly cropped back to the original size. Each 

image was also randomly horizontally flipped. The 

stochastic gradient descent with momentum is selected to 

optimize our models. Finally, the learning rate is reduced 

with Cosine annealing [14]. 

We set notations as follows: binary for BC with TQT, 

ternary for TWN with TQT, int8 for TQT only, and float 

for all FP32 floating-point model. The test accuracy over 

training epochs of each model is shown in Fig. 2. The 

best test accuracy of each model is shown in Table 2. 

 

 

Fig. 2. Test accuracies of different methods per the training 

epoch. 

Table 2 The best accuracy of VGG16 with different 

quantization methods. 

Model Test 

Accuracy 

binary 0.9269 

ternary 0.9351 

int8 0.9353 

float 0.9389 
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In this experiment, we found that float provides the best 

test accuracy; however ternary and int8 also provide 

competitive results to float, which is quite surprising. In 

terms of binary, it gives the worst test accuracy. Further 

analysis of these outcomes, we scope them as future work. 

 

5. Conclusion 

We proposed ITBWN or a BC or TWN model with an 

INT8 quantized activations. Our experiment shows 

ITBWN with ternary weights provides the competitive 

result to both INT8 quantized and floating-point models. 

Converting floating-point activation into INT8 with TQT 

allows only-weight quantized model to deploy in 

hardware without worrying about the cost of floating-

point accumulation. 

For future work, we planned to further analyze why 

the performance between ternary and int8 is so close to 

each other. We also would like to find why binary drops 

a high amount of test accuracy compared to ternary while 

only 1-bit differs. 
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