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Abstract 

In this presentation, a parallel microwave analysis code based on an iterative domain decomposition method is 

explained that is named ADVENTURE_Fullwave. A stationary vector wave equation for the high-frequency 

electromagnetic field analyses is solved taking an electric field as an unknown function. Then, to solve subdomain 

problems by the direct method, the direct method based on the LDLT decomposition method is introduced in 

subdomains. Then, a numerical result by a microwave oven model is shown. The simplified Berenger’s PML is 

introduced which these eight corners are given the average value of all PML’s layers. 

Keywords: Electromagnetic field analysis, Finite element method, Domain decomposition method, Huge-scale 

analysis. 

1. Introduction

Electromagnetic field analysis based on a numerical 

analysis method, such as the finite element method, has 

become widespread [1] due to recent improvements in 

computer performance and numerical calculation 

technology. In the case of accurately reproducing an 

analysis model of complicated shape, it is necessary to 

use many small the elements. In the case of analyzing the 

state of electromagnetic waves propagation in a wide 

range, a wide analysis domain is examined. Furthermore, 

to perform a high-accuracy analysis, it is necessary to 

model the analysis domain with a sufficiently small 

element for the wave-length, and, in this case, the number 

of elements also increases. Increasing the number of 

elements increases the scale of the problem. Therefore, a 

method that can calculate large-scale problems has come 

to be demanded. Moreover, large-scale problems must be 

solved with high accuracy. In the presentation, a large-

scale analysis code: ADVENTURE_Fullwave is 

introduced, and detail of the parallel algorism is shown. 

2. Governing equations and algorithm for

parallel computing

In ADVENTURE_Fullwave, the full-wave analysis 

based on an 𝐸  method [1] is considered. 𝐄h  and 𝐉ℎ  are

finite element approximations of electric field 𝐄 [V/m] 
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and current density 𝐉  [A/m2], respectively. The 

permeability is given by 𝜇 = 𝜇0𝜇𝑟  [H/m], 𝜇0  is the 

vacuum permeability [H/m], and  𝜇𝑟  is the relative 

permeability. The complex permittivity is given by 𝜀 =

𝜀0𝜀𝑟 − 𝜎 𝑗𝜔⁄  [F/m], 𝜀0 is the vacuum permittivity [F/m], 

𝜀𝑟  is the relative permittivity, and 𝜔  is the angular 

frequency [rad/s]. The following equation is the finite 

element equation to be solved: 

∭ (1 𝜇⁄ )rot𝐄h ∙ 𝑟𝑜𝑡𝐄h
∗𝑑𝑣

𝛺

− 𝜔2 ∭ 𝜀𝐄h ∙ 𝐄h
∗𝑑𝑣

𝛺

= 𝑗𝜔 ∭ 𝐉ℎ ∙ 𝐄ℎ
∗𝑑𝑣

𝛺

.                      (1) 

The equation contains complex numbers and becomes a 

complex symmetric matrix. In the present study, the 

electric field 𝐄, which is unknown, is obtained using the 

conjugate orthogonal conjugate gradient (COCG) 

method. The finite element approximation (1) is 

rewritten as 𝐾𝑢 = 𝑓 by the coefficient matrix 𝐾, the 

unknown vector 𝑢, and the right-hand side vector 𝑓. 

Next, Ω is divided into 𝑁 subdomains (Eq. (2)). Eq. (3) 

and (4) are obtained from Eq. (2). 
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where 𝑓𝐵
(𝑖)

 is the right-hand vector for 𝑢𝐵, and (𝐾𝐼𝐼
(𝑖)

)
−1

 

is the inverse matrix of 𝐾𝐼𝐼
(𝑖)

. Equation (4) is referred to 

as an interface problem and is an equation for satisfying 

the continuity between domains in the domain 

decomposition method. For simplicity, rewrite equation 

(5) as follows: 

𝑆𝑢𝐵 = 𝑔,

𝑆 = ∑ 𝑅𝐵
(𝑖)𝑆(𝑖)𝑅𝐵

(𝑖)𝑇
𝑁

𝑖=1
,   𝑆(𝑖)

= 𝐾𝐵𝐵
(𝑖)

− 𝐾𝐼𝐵
(𝑖)𝑇(𝐾𝐼𝐼

(𝑖))
−1

𝐾𝐼𝐵
(𝑖).                                     (5) 

 

3. PML 

3.1. Berenger's PML 

The PML can be used to create an absorbing boundary by 

surrounding the analysis domain with a PML. From the 

viewpoint of the accuracy of the obtained solution, the 

PML is currently the most effective absorbing boundary 

condition. Although Berenger's PML is originally 

proposed as an absorbing boundary condition for the 

FDTD method, in the present study, we apply a finite 

element method dealing with an unstructured grid, we 

propose a simplified method omitting the directionality 

of electric conductivity given to the PML and confirm its 

effectiveness. 

Berenger's PML stacks several PMLs outside the analysis 

domain and gradually sets a large value of electric 

conductivity according to the outer layer so that the 

outermost wall can be surrounded with a perfect 

conductor wall without reflecting electromagnetic waves. 

Fig. 1 shows a schematic diagram of Berenger's PML 

absorbing boundary. 

 
Fig. 1.  PML absorbing boundary 

 

In this paper the distribution of the electric conductivity 

for PML is expressed as follows: 

𝜎 = 𝜎𝑚𝑎𝑥 [
(𝐿 − 𝐿̂(𝑥)) ∆𝑥

𝐿∆𝑥
]

𝑀

                                (6) 

      

   

where ∆x is the thickness of PML 1, L is the number of 

layers of the PML, 𝐿̂(𝑥) is a coefficient determined by 

position x, and 𝐿̂(𝑥) = 0 at the position of the Lth layer, 

𝐿̂(𝑥)   = 1 at the position of the (L-1)th layer, and 𝐿̂(𝑥)  

= L -1 at the position of the first layer. 

Moreover, σmax is the maximum value of the electric 

conductivity for the PML, and M is the degree 

distribution of electric conductivity. This equation is used 
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to determine the electric conductivity of each layer of the 

PML. 

The parameters to be determined as the parameters 

of the PML are the thickness ∆x of PML 1, the number L 

of PML layers, the maximum electric conductivity σmax 

of the PML, the degree M distribution of the electric 

conductivity, the reflection coefficient R [dB] between 

the PML of the outermost layer, and the perfect 

conductor wall. The reflection coefficient R is 

approximated as follows:  

 

|𝑅(𝜙)| ≅ 𝑒𝑥𝑝 [−
2𝜎𝑚𝑎𝑥𝐿∆𝑥

(𝑀+1)𝜀0𝑐
cos𝜙]                               (7)

    

where ϕ is the incident angle of the electromagnetic wave, 

and c is the speed of light. Since we cannot decide the 

incident angle for an arbitrary incident wave, ϕ = 0, a 

reflection coefficient for perpendicular incidence is used 

as a reference. Moreover, since the M that gives the 

distribution of the electric conductivity causes the 

calculation accuracy to deteriorate if the change of the 

electric field in the PML is too steep, M is approximately 

2 to 4. If the number of layers L is too large, more 

memory will be required, and if L is too small, it will not 

function adequately as an absorbing boundary. There are 

many cases where the concrete number of L is set to 4 to 

16. The thickness ∆x of PML 1 is a constant thickness of 

all layers. 

We set the reflection coefficient R(0) according to the 

required accuracy. Upon determining the above 

parameters, the maximum electric conductivity σmax is 

given as follows:  

 

𝜎𝑚𝑎𝑥 = −
(𝑀+1)𝜀0𝑐

2𝐿∆𝑥
ln|𝑅(0)|                                             (8)

       

In the present study, we construct a PML using (6) 

through (8) with 𝐿 = 9, 𝑀 = 4, and ∆𝑥 = λ/10. However, 

in order to reduce the analysis scale, we examine the 

optimum value of L in the next section. 

3.2. Numerical results 

We assign the PML to the dipole antenna model. The 

analysis domain is a cube of length 0.6 [m] so that the 

distance from the antenna to the innermost PML matches 

the wavelength. The current density is applied to the 

antenna as a current source as follows: 

 

𝐼(𝑦) = 𝐼0 cos (
2𝜋

𝜆
𝑦)     ∶ −𝑙 ≤ 𝑦 ≤ 𝑙                               (9) 

 

where 𝐼0 = 0.08 [A/m2], 𝜆 is the wavelength, and 𝑙 is the 

length from the feeding point to the antenna tip. 

The analysis frequency is 1 [GHz], and the length of the 

antenna is 0.15 [m], which is the half wavelength. Here, 

mesh division is performed so that the maximum side 

length of the element is 1/20 of the wavelength. The 

analysis domain’s boundary is a perfect conductor. Fig. 4 

shows a schematic diagram of the dipole antenna model. 

 

    
(a) Analysis domain                    (b)  Antenna 

Fig. 2. Dipole antenna model 

 

We assign PMLs to the domain boundary as shown in Fig. 

2(a). The plane portion of the PML at the domain 

boundary overlaps a number of flat plates according to 

the number of layers, and the corner portion of the PML 

is one rectangular parallelepiped or cube. The boundary 

of the outermost layer of the PML is a perfect conductor 

wall. We perform performance evaluation by setting the 

thickness of one layer to be 0.03 [m] and the PML to have 

𝐿 = 9 (hereinafter a PML with L layers is abbreviated as 

PML(𝐿)). Table 1 lists the number of elements and the 

degree of freedom of the analysis model. 

 

Table 1. Number of elements and DOFs of the dipole 

antenna model 

 
PML(0): Perfect 

conductor wall 
PML(9) 

No. of 

Elements 
4,669,759 26,899,669 

DOFs 5,506,368 31,703,550 

 

In (8), we set 𝐿 = 9, ∆𝑥 = 0.03, 𝑀 = 4, and 𝑅(0) = -120 

[dB], which yields the maximum electric conductivity 

𝜎𝑚𝑎𝑥  to PML(9). In addition, we decide the electric 

conductivity of each layer using (6). In this study, we set 

the average value of each layer to the electric 

conductivity of the corner portion. We evaluate the 

performance of the PML based on the reflection 

coefficient obtained using the S11 parameter3. The 

observation point of the S11 parameter is on the x-axis 1 

cm inside of the PML. The computing environment in the 

present study is a 25-PC cluster with Intel Core i7-2600K 

multi-core CPUs (total: 100 cores) and 32 GB memory. 
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Table 2 lists the reflection coefficient, the CPU time, and 

the memory size. 

 

Table 2. Results for reflection coefficient, CPU time, and 

memory size 

 

PML(0):  

Perfect 

conductor wall 

PML(9) 

Reflection 

coefficient [dB] 
0 -18.65 

CPU time [s] 1,278 18,787 

Memory size 

[MB/core] 
44.3 227.3 

 

When the domain boundary is PML(0), i.e., when it is a 

perfect conductor wall, S11 = 1, so that the reflection 

coefficient is 0 [dB]. On the other hand, when the domain 

boundary is PML(9), the reflection coefficient is -18.65 

[dB]. The design target reflection coefficient of the 

antenna, for example, is generally approximately -10 to -

20 [dB], and in the present study, we use a reflection 

coefficient of approximately -10 to -20 [dB]3. Thus, 

PML(9) can obtain sufficient absorption performance. 

On the other hand, in comparing with PML (0), PML (9) 

increases the amount of memory used and computation 

time, depending on the absorbing layer applied. Fig. 7 

shows a visualization diagram of the electric field 

obtained by analysis. 

 

 
Fig. 3.  Visualization of the analysis result (electric field) 

(Left: PML(9), Right: PML(0) (perfect conductor wall)) 

 

In Fig. 3, the left-hand side shows PML(9) at the 

boundary edge and the electric field propagates from the 

dipole antenna to the free space. On the other hand, the 

right-hand side of Fig. 3 shows the mode when the dipole 

antenna is enclosed by a perfect conductor wall. 

Next, we perform the directivity evaluation of the dipole 

antenna by error evaluation using the theoretical solution 

in the far field. The error evaluation of the far field uses 

the E plane. 

The theoretical solution3 of the far field of the E plane is 

as follows: 

 

𝐸𝜃 = 𝑗60𝐼
𝑒−𝑗𝑘𝑟

𝑟
∙
cos (

𝜋
2

cos 𝜃)

sin 𝜃
                                 (10) 

      

  

where 𝑗 is the imaginary unit, 𝐼 is the current, and 𝑟 is the 

distance from the feeding point. The approximate 

distance 𝑟 to the far-field peak of the Fresnel’s region 

(2 𝑙2/𝜆 <  𝑟) is 0.250 [m], if the dimension l (= 0.150 

[m]) of the dipole antenna is not ignored. Moreover, 𝑘 is 

the wave number and is given by 𝑘 = 2𝜋 𝜆⁄ . The 

directivity evaluation is performed by comparing the 

numerical analysis solution with the theoretical solution 

on the E plane. Fig. 4 shows a plot of the numerical 

analysis solution 𝑒𝜃  and the theoretical solution 𝐸𝜃  in 

increments of 1 [deg].  

 

 
Fig. 4.  Numerical and theoretical solutions in the E plane 

 

The directivities of the numerical and theoretical 

solutions agree very well. The range of θ, which is the far 

field far beyond the Fresnel’s region, can be expressed by 

(11). The lower limit 𝜃𝑀𝑖𝑛  is arcsin( 2 𝑙2 ∕ 𝑟𝜆) + 90 ≅
−57  [deg], and the upper limit 𝜃𝑀𝑎𝑥  is 90 −
arcsin( 2 𝑙2 ∕ 𝑟𝜆) ≅ 53  [deg]. The average error rate 

𝐸𝑒𝑟𝑟  in this range is obtained by (12). As a result, the 

average error rate is 1.70 [%], and it is shown that a 

highly accurate solution can be obtained. 

 

arcsin ( 
2 𝑙2

𝑟𝜆
) + 90 ≤ 𝜃 ≤ 90−arcsin (

2 𝑙2

𝑟𝜆
 )      (11) 

 

𝐸𝑒𝑟𝑟 =
∑

|𝑒𝑖 − 𝐸𝑖|
𝐸𝑖

𝜃𝑀𝑎𝑥
𝑖=𝜃𝑀𝑖𝑛

𝜃𝑀𝑎𝑥 − 𝜃𝑀𝑖𝑛 + 1
× 100      [%]                      (12) 
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In the calculations shown in Fig. 2, we used a dipole 

antenna model with PML(9). Here, we find the optimum 

L from the average error rate in the far field and the 

reflection coefficient of PML(L) by a parameter study 

using the number of PMLs. Table 3 shows the number of 

elements for each L, the number of degrees of freedom of 

the edge, the error rate, the reflection coefficient, the 

calculation time, and the number of iterations of the 

COCG method applied to the interface problem. 

 
Table 3. Numerical model data and results 

 PML(9) PML(8) PML(7) 

No. of 

elements 
26,899,669 24,184,687 21,533,641 

DOFs 31,703,550 28,506,352 25,383,890 

Average 

error rate 

[%] 

1.70 3.81 12.87 

Reflection 

coefficient 

[dB] 

-18.65 -15.79 -15.04 

CPU time 

[h] 
5.22 3.77 2.81 

No. of 

iterations 
46,508 37,755 30,695 

Memory 

size 

[MB/core] 

227.3 204.6 182.6 

 

From Table 3, PML(9) is the case with the best far field 

accuracy. When the allowable range of the error rate is 

less than 5 [%], which is the allowable range of numerical 

analysis error, since PML(7) has a reflection coefficient 

of less than -15 [dB], the PML functions sufficiently. 

However, the error rate exceeded the allowable range. 

We can find that PML(8) is optimal because it has a better 

calculation time and iteration count than PML(9). 

4. Conclusion 

In the present paper, we propose a simplified method that 

omits the directionality to Berenger's PML hyperbolic 

problems like a high-frequency electromagnetic field 

analysis and gives the average value of the electric 

conductivity of each layer at the corner of the model. 

Performance evaluation reveale that sufficient absorption 

performance can be obtained. In the accuracy verification 

by directivity evaluation of the dipole antenna, when the 

maximum element side length is set to 1/20 of the 

wavelength and the PML to be given is set to 9 layers, the 

error rate of the numerical solution and the theoretical 

solution is about 1.70 [%]. It is found that a highly 

accurate solution can be obtained. In addition, when the 

tolerance range of the far-field error rate that is 

considered to be sufficiently practical is set to less than 5 

[%], an eight-layer PML is found to be optimal. In 

addition, the usefulness of the proposed method for a 

frequency band of 1.2 GHz or higher, which is used in 

microphones and mobile phones, is demonstrated.  
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