
 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

Expansion of Application Scope and Addition of a Function for Operations into BWDM to

Generate Test Cases from VDM++ Specification

Takafumi Muto*, Tetsuro Katayama*, Yoshihiro Kita†,

Hisaaki Yamaba*, Kentaro Aburada*, Naonobu Okazaki*

* Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki,

 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192 Japan
†Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki

 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki, 851-2195 Japan

E-mail: muto@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp,

yamaba@cs.miyazaki-u.ac.jp, aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

Generating test cases from the VDM++ specification to eliminate ambiguity in the specification is labor-intensive

and time-consuming. Therefore, our laboratory developed BWDM, which is an automatic test case generation tool

for VDM++ specifications. However, BWDM is not very useful because it has three problems about its narrow scope

of application. This paper extends BWDM to solve three problems. In addition, we conducted a comparison

experiment with manual test case generation and confirmed a time saving of about 17 minutes.

Keywords: software testing, formal methods, test cases, VDM++, automatic generation.

1. Introduction

One of the methods to eliminate the ambiguity of

specifications in software design is to use formal methods

for software design. One of the formal specification

description languages is VDM++1.

On the other hand, software testing is also necessary

in design using formal methods, but manually generating

test cases is labor-intensive and time-consuming.

Therefore, we have developed BWDM, which is an

automatic test case generation tool for VDM++

specifications, in our laboratory2,3. BWDM automatically

generates test cases that can be used to perform boundary

value testing, domain analysis testing, and testing based

on structure recognition of if-then-else expressions.

However, BWDM is not very useful because it has

the following three problems about its narrow scope of

application.

⚫ It does not support conditional expressions for

invariant conditions and pre-conditions and

post-conditions.

⚫ It does not support type definition blocks.

⚫ It is not able to generate test cases for

operation definitions that manipulate the

object state.

Therefore, in order to improve the usefulness of

BWDM, this paper extends BWDM to solve the above

three problems.

2. The Extended BWDM

The structure of the extended BWDM is shown in Fig. 1.

2.1. Analysis and Evaluation of Each Conditional

Expressions in the Definition

To solve the problem that the existing BWDM does not

support conditional expressions for invariant conditions,

pre-conditions, and post-conditions set in the definition,

we extend the Syntax Analyzer and Test Suite Generator

of BWDM.

The Syntax Analyzer is modified to obtain

inputConditions, which store the conditional expressions

183

mailto:kat@cs.miyazaki-u.ac.jp
mailto:yamaba@cs.miyazaki-u.ac.jp
mailto:aburada@cs.miyazaki-u.ac.jp
mailto:oka@cs.miyazaki-u.ac.jp

Takafumi Muto, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki.

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

needed to determine the input data, and outputConditions,

which are the conditional expressions needed to

determine the expected output. inputConditions store

pre-conditions and invariant conditions of argument

types, and outputConditions store post-conditions. The

inputConditions are passed to the Boundary Value

Analyzer to obtain the input data.

The Test Suite Generator adds a process to evaluate

the conditional expressions of inputConditions and

outputConditions during the process of generating the

expected output. If the conditional expression is false, it

means that the conditional expression set in the definition

is not satisfied at the beginning or end of the process, so

"Undefined Action" is set as an expected output. If the

conditional expression is true, the expected output is the

same as the existing BWDM.

2.2. Support Type Definition Blocks

To solve the problem that the existing BWDM does not

support typedef blocks, the Syntax Analyzer is modified.

In the extended BWDM, the Syntax Analyzer keeps

an abstract syntax tree of type definitions when it

performs abstract parsing. When a type definition is used

in each definition block, the type definition is converted

to the actual type based on this abstract syntax tree.

Furthermore, during conversion, conditional expressions

for invariant conditions are added to inputConditions if

the type to be converted is an argument type of an

operation definition or function definition, or to

outputConditions if it is an instance variable type.

2.3. Addition of a Function to Generate Test

Cases for Object States

To solve the problem that the existing BWDM cannot

generate test cases for operation definitions that

manipulate object states, we add a function to generate

test cases for object states.

The VDM++ specification includes invariant

conditions for classes and types, and pre-conditions and

post-conditions for operation and function definitions.

The VDM++ specification includes invariant conditions

for classes and types, and pre-conditions and post-

conditions set in operation and function definitions. The

test cases for object states to be generated in this paper

are test cases that use these conditions to generate the

expected output of whether the state of the object after

the operation is Normal or Failure, or whether there is an

error in the input. If there is an error in the input, the

expected output is set to "Undefined Action" as in the

existing test case generation. Table 1 shows the expected

states and the conditions corresponding to the states.

In generating the test case, the Test Suite Generator

obtains the object state after the operation by using an

arithmetic expression to be assigned to the instance

variable and the value of the instance variable.

3. Application Example

In this chapter, we confirm that the extended BWDM

works correctly by using application examples. An

example of the VDM++ specification is shown in List 1,

and the output of applying it as input to the extended

BWDM is shown in List 2.

Fig. 1. The structure of the extended BWDM

Table 1. The expected states and the conditions

corresponding to the states

expected state conditions

Normal All conditionals are true

Failure

The invariant condition of the instance

variables definition is false.

Post-condition is false

The value of the instance variable after the

operation is outside the range of the type.

Undefined

Action

Pre-condition is false

The invariant condition of the types

definition is false

The value is outside the range of the

argument type

184

 Expansion of Application Scope

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

3.1. Confirmation of the Analysis and Evaluation

of Each Conditional Expression in the

Definition.

In List 2, we have generated a test case that inputs 10 and

11 for the argument tickets. From this, we can confirm

that we can obtain the boundary value from the pre-

condition "tickets <= 10" in List 1. The output is

"Undefined Action" when the pre-condition is not

satisfied, "Failure" when the invariant and post-

conditions are not satisfied, and "Normal" when all the

conditions are satisfied. We can confirm that each

conditional expression is evaluated correctly.

3.2. Confirmation of Support Type Definition

Blocks

In the "PayWithCardsAndCoupons" operation shown in

List 1, the argument type of "amount" is "yen", which is

defined in the type definition. In List 2, we have

confirmed that we can generate a test case for the

boundary value of the nat type, which is the actual type

of "yen".

3.3. Confirmation of Addition of a Function to

Generate Test Cases for Object States

In the "PayWithCardsAndCoupon" operation of List 1, if

0 and 10 are used as inputs, the value of the instance

variable "coupon" after the operation will be -2. Since

"coupon" is of type nat and the conditional expression "0

<= coupon" stored in outputConditions is false, the

expected state of the object is "Failure". In the test case

No. 19 in List 2, the expected object state is "Failure"

with 0 and 10 as inputs, so it can be confirmed that the

test cases for the object state can be generated

appropriately.

4. Discussion

4.1. Evaluation on the Analysis and Evaluation

of Each Conditional Expression in the

Definition.

We have confirmed that the extended BWDM can

generate test cases corresponding to the conditional

expressions in the invariant, pre-condition, and post-

condition. This enables the generation of test cases

corresponding to the conditional expressions set in the

definitions, thus extending the range of applications of

BWDM. Therefore, we can say that the usefulness of

BWDM has been improved.

List 2. Output when List 1 is applied to the extended BWDM List 1. Example of VDM++ specification

 class Payment

types

 public yen = nat;

values

 cardUsageLimit: yen = 100000;

instance variables

 coupon: nat := 8;

 cardUsageAmount: yen := 0;

 inv cardUsageAmount <= cardUsageLimit;

operations

 PayWithCardsAndCoupons: yen * nat ==> ()

 PayWithCardsAndCoupons(amount, tickets) ==

 (cardUsageAmount :=

 cardUsageAmount + (amount - amount *

(tickets * 0.1));

 coupon := coupon - tickets)

 pre tickets <= 10

 post coupon~ = coupon + tickets;

functions

end Payment

Function Name : PayWithCardsAndCoupons

Argument Type : amount:nat tickets:nat

Return Type : ()

Number of Test Cases : 24 cases

Boundary Values for Each Argument

amount : 4294967295 4294967294 0 -1

tickets : 4294967295 4294967294 0 -1 10 11

Test Cases for Object States

No.1 : 4294967295 4294967295 -> Undefinde Action

(- Omission -)

No.11 : 0 0 -> Normal

No.12 : -1 0 -> Undefinde Action

No.13 : 4294967295 -1 -> Undefinde Action

No.14 : 4294967294 -1 -> Undefinde Action

No.15 : 0 -1 -> Undefinde Action

No.16 : -1 -1 -> Undefinde Action

No.17 : 4294967295 10 -> Undefinde Action

No.18 : 4294967294 10 -> Failure

No.19 : 0 10 -> Failure

No.20 : -1 10 -> Undefinde Action

No.21 : 4294967295 11 -> Undefinde Action

No.22 : 4294967294 11 -> Undefinde Action

No.23 : 0 11 -> Undefinde Action

No.24 : -1 11 -> Undefinde Action

185

Takafumi Muto, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki.

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

4.2. Evaluation on Support Type Definition

Blocks

We have confirmed that the extended BWDM can

generate test cases for VDM++ specifications using type

definitions. As a result, the extended BWDM can

generate test cases corresponding to the definitions

described in the type definition block, and the application

range of BWDM has been extended. Therefore, we can

say that the usefulness of BWDM has been improved.

4.3. Evaluation on Addition of a Function to

Generate Test Cases for Object States

We have confirmed that the extended BWDM can

generate test cases for object states. As a result, the

extended BWDM can generate test cases for operation

definitions that manipulate the state of objects, which the

existing BWDM cannot generate. Therefore, we can say

that the usefulness of BWDM has been improved by

adding the ability to generate test cases for object

manipulation to BWDM.

4.4. Comparison and Verification with Manual

Test Case Generation

We compared and verified the test case generation time

for the object states of the extended BWDM with that of

the manual case. The target VDM++ specification is the

specification in List 1. The results of the comparative

verification are shown in Table 2.

Manual verification was conducted by a total of five

people, two graduate students, and three fourth-year

undergraduates, and the time required to finish writing all

the necessary test cases was measured. If the test cases

were inaccurate, we pointed out the mistakes, and the

time measurement ended when the subjects wrote the

correct test cases.

 As shown in Table 2, the time required to generate

test cases using the extended BWDM was reduced by

about 17 minutes compared to generating test cases

manually. In addition, human error was observed in the

manual test case generation.

In the function to generate test cases for object

states added in this paper, it was confirmed that the time

required for test case generation, which was a feature of

the existing BWDM, could be reduced and that human

errors could be eliminated. Therefore, we can say that the

usefulness of BWDM has been improved.

5. Conclusion

In this paper, to improve the usefulness of BWDM, it has

been extended to solve the three problems.

An example of the application to the extended

BWDM is shown, and it is confirmed that the above three

problems have been solved.

Furthermore, as a result of comparing and verifying

the time required to generate test cases manually, we

were able to confirm that the time required to generate

test cases using the extended BWDM was reduced by

about 17 minutes. In addition, human errors were

observed in the manual test case generation, and it was

confirmed that human errors could be eliminated in the

test case generation by using the extended BWDM.

From the above, the BWDM extended in this paper

can be said to have improved its usefulness.

The following is a list of future tasks.

⚫ Support for types other than integer types

⚫ Support for conditional expressions that refer

to the value after the operation

6. References

1. Overture Project. Manuals.
http://overturetool.org/documentation/manuals.htm

l. Accessed: 2021-12-13.

2. H. Tachiyama, T. Katayama, T. Oda. Automated

Generation of Decision Table and Boundary values

from VDM++ Specification. The 15th Overture

Workshop: New Capa-bilities and Applications for

Model-based Systems Engineering Technical

Report Series, No. CS-TR-1513-2017, pp. 89-103,

2017.

3. T. Katayama, F. Hirakoba, Y. Kita, H. Yamaba, K.

Aburada, and N. Okazaki. Application of Pirwise

Tsting into BWDM which is a Test Case Generation

tool for the VDM++ Specification. Journal of

Robotics, Networking and Artificial Life, Vol.6,

No.3, pp.143-147, 2019.

Table 2. Comparison of test case generation time

by the extended BWDM and manual test case

generation time for the specification in List 1

 Time

Average of 5 subjects 17m19s

BWDM 1.4s

186

http://overturetool.org/documentation/manuals.html
http://overturetool.org/documentation/manuals.html
http://overturetool.org/documentation/manuals.html
http://overturetool.org/documentation/manuals.html
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://eprints.ncl.ac.uk/243183
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view

 Expansion of Application Scope

© The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

Authors Introduction

Tetsuro Katayama

Tetsuro Katayama received a Ph.D.

degree in engineering from Kyushu

University, Fukuoka, Japan, in 1996.

From 1996 to 2000, he has been a

Research Associate at the Graduate

School of Information Science, Nara

Institute of Science and Technology,

Japan. Since 2000 he has been an

Associate Professor at the Faculty of Engineering,

Miyazaki University, Japan. He is currently a Professor

with the Faculty of Engineering, University of Miyazaki,

Japan. His research interests include software testing and

quality. He is a member of the IPSJ, IEICE, and JSSST.

Yoshihiro Kita

Yoshihiro Kita received a Ph.D.

degree in systems engineering from

the University of Miyazaki, Japan, in

2011. He is currently an Associate

Professor with the Faculty of

Information Systems, University of

Nagasaki, Japan. His research

interests include software testing and

biometrics authentication.

1. Hisaaki Yamaba
Hisaaki Yamaba received the B.S.

and M.S. degrees in chemical

engineering from the Tokyo Institute

of Technology, Japan, in 1988 and

1990, respectively, and the Ph D.

degree in systems engineering from

the University of Miyazaki, Japan in

2011. He is currently an Assistant

Professor with the Faculty of

Engineering, University of Miyazaki, Japan. His research

interests include network security and user authentication.

He is a member of SICE and SCEJ.

Kentaro Aburada

Kentaro Aburada received the B.S.,

M.S, and Ph.D. degrees in computer

science and system engineering from

the University of Miyazaki, Japan, in

2003, 2005, and 2009, respectively.

He is currently an Associate

Professor with the Faculty of

Engineering, University of Miyazaki,

Japan. His research interests include

computer networks and security. He is a member of IPSJ

and IEICE.

Naonobu Okazaki

Naonobu Okazaki received his B.S,

M.S., and Ph.D. degrees in electrical

and communication engineering from

Tohoku University, Japan, in 1986,

1988 and 1992, respectively. He

joined the Information Technology

Research and Development Center,

Mitsubishi Electric Corporation in

1991. He is currently a Professor with

the Faculty of Engineering, University of Miyazaki since

2002. His research interests include mobile network and

network security. He is a member of IPSJ, IEICE and

IEEE.

Takafumi Muto

Takafumi Muto received the

Bachelor's degree in engineering

(computer science and systems

engineering) from the University of

Miyazaki, Japan in 2021. He is

currently a Master's student in

Graduate School of Engineering at the

University of Miyazaki, Japan. His

research interests software testing, software quality, and

formal method.

187

