
 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

N-Switch and All-Path Test Coverage Criterion for Extended Finite State Machine

Tomohiko Takagi

Department of Engineering and Design, Faculty of Engineering and Design, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan

Koichiro Sakata

Division of Reliability-based Information Systems Engineering, Graduate School of Engineering, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan

Kouichi Akiyama

Japan WillTech Solution Co., Ltd.

14F Nihonbashi-Muromachi Mitsui Tower, 2-1, Nihonbashi-Muromachi 3-chome, Chuo-ku, Tokyo 103-0022, Japan

E-mail: takagi@eng.kagawa-u.ac.jp, s20g465@stu.kagawa-u.ac.jp

Abstract

This paper shows a new test coverage criterion for extended finite state machine to comprehensively test the

combination of state transitions and accompanying actions in software. Our criterion requires that (i) test cases cover

all the successive state transition sequences of specified length, and also (ii) the test cases cover all the paths on

control flow graphs of actions that accompany each of the successive state transition sequences. (i) and (ii) are the

characteristics of N-switch and all-path test coverage criterion, respectively. Its definition, example and effectiveness

are discussed in this paper.

Keywords: model-based testing, finite state machine, test case, test coverage criterion

1. Introduction

One of the well-used software modeling languages in

model-based testing1 is EFSM (Extended Finite State

Machine)2,3. It enables engineers to define the expected

behavior of software from the aspect of not only state

transitions but also data processing. The part of state

transitions, which corresponds to FSM, is drawn in the

form of simple table or directed graph. On the other hand,

the part of data processing, which corresponds to the

actions on state transitions, is written in natural languages

or TBFML (Text-Based Formal Modeling Language).

Test cases are usually created from EFSM models so as

to satisfy a test coverage criterion called N-switch4, that

is, cover all the successive state transition sequences of

length N+1 (N≥0). However, N-switch is originally

designed for FSM, and actions are not taken into account

in it. The behavior of software is determined by the

combination of state transitions and actions in EFSM

models, and thus it should be comprehensively tested.

To address this problem, we propose a new test

coverage criterion for EFSM, named N-SAPL (N-Switch

for state transitions and All-Path with loop frequencies L

for actions) in this paper. It is a combination of N-switch

and AP (All-Path test coverage criterion). AP is usually

used in structural testing5 in order to cover all the paths

on control flow graphs of programs under test. N-SAPL

requires that (i) test cases cover all the successive state

transition sequences of length N+1, and also (ii) the test

cases cover all the paths on control flow graphs of actions

that accompany each of the successive state transition

sequences. (i) and (ii) are the characteristics of N-switch

and AP, respectively. Note that L expresses a set of loop

frequencies to be taken into account in the control flow

graphs of actions. When there are any loop structures in

the actions, L makes the number of paths that should be

174

Tomohiko Takagi, Koichiro Sakata, Kouichi Akiyama

 The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

covered finite. To avoid the ambiguity and allow the code

coverage analysis for AP, all the actions in our EFSM

models are written only in TBFML, such as VDM++6,7.

This paper is organized as follows. Section 2 shows

the overview of traditional model-based testing using

EFSM. In section 3, we describe the details of N-SAPL

and a simple example. Section 4 gives discussion based

on preliminary experiments. Finally, section 5 shows

conclusion and our future work.

2. Traditional Model-Based Testing Using

EFSM

Fig. 1 shows an example of an abstracted EFSM model.

An EFSM model in this study mainly consists of states,

events, and actions. It illustrates possible state transitions

with data processing in software, and each of them is

identified by a tuple in the form of <from-state, event,

action, to-state>. For example, the state transition β in

Fig. 1 is identified by <s2, e1, a2, s4>. Each state transition

can optionally have event parameters and a guard. Each

of actions consists of codes written in TBFML, and can

define and refer variables that characterize the behavior

of software. Some actions may be shared by different

state transitions. For example, a2 is shared by β and δ in

Fig. 1.

Test cases are created from an EFSM model in the

form of sequences of successive state transitions and

expected values of variables. The quality of the test cases

is usually evaluated by N-switch, and they are created so

as to satisfy it. Software implemented based on the EFSM

model can be closely tested by a larger value of N. For

example, a technique using orthogonal arrays is used to

reduce testing effort8.

In general, coverage of given test cases is calculated

by |M'| |M|⁄ . M expresses a set of measuring objects that

should be covered, and is determined by a selected test

coverage criterion. For example, M for 1-switch is a set

of all the successive state transition sequences of length

2. In N-switch, a larger value of N results in M that

consists of a larger number of measuring objects. On the

other hand, M' expresses a set of measuring objects that

have actually been covered by the given test cases, and

satisfies M'⊆M. When M' is equal to M, the test coverage

criterion is satisfied. Therefore, a larger value of N results

in a larger number of test cases to satisfy N-switch.

3. N-SAPL Test Coverage Criterion for EFSM

As is discussed above, test coverage criteria are used to

determine measuring objects. In this section, we propose

a procedure to systematically get measuring objects for

N-SAPL from a given EFSM model. The procedure

consists of the following five steps. At least Step 2, 3, 4

and a part of Step 5 can be automated.

Step 1. N and L are determined by test engineers

according to a given test plan. The former is for the

length of successive state transition sequences to be

covered, and the latter is the set of loop frequencies

to be taken into account in actions.

Step 2. A set of all the measuring objects for N-switch

is generated by using a common graph search

algorithm. The set is hereinafter referred to as MSN.

The measuring objects as the elements of MSN are

successive state transition sequences of length N+1,

and each of them is hereinafter referred to as stsx

(1≤x≤|MSN|). For example, MS1 for Fig. 1 is {αβ, αγ,

βε, βζ, γδ, δε, δζ, εβ, εγ}.

Additionally, MSN should include special measuring

objects that satisfy all of the following conditions:

• Their length are less than N+1.

• They start with the initial state, and end with a
final state.

For example, MS3 for Fig. 1 should include αβζ. The

special measuring objects ensure that the satisfaction

of N-SAPL results in the satisfaction of N'-SAPL

(N'<N).

Fig. 1. Example of an abstracted EFSM model.

Fig. 2. Abstracted control flow graphs of actions in Fig. 1.

s2

s1

(α) e1, a1

s5

s4

s3
(ε) e2, a3

(ζ) e1, a4

(β) e1, a2

(γ) e2, a3

(δ) e2, a2

Elements of the model
• states: s1, s2, s3, s4, s5

• evens: e1, e2

• actions: a1, a2, a3, a4

Note
• State transitions are labeled

with Greek small letters.
• The details of the elements

are omitted in this paper.

b2

b3

start

end

b4

b5

start

end

a1

b1

end

start

b6

end

start

a2 a3 a4

Elements of the model
• basic blocks: b1, b2, b3, b4, b5, b6

175

 N-Switch and All-Path Test

 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

Step 3. A set of all the paths in each action is derived by

using common path analysis based on control flow

graphs. When there are any loop structures in actions,

only the loops of frequencies specified by L are taken

into account. Fig. 2 shows abstracted control flow

graphs of the actions in Fig. 1. For example, when L

is {0, 1}, the sets for a1, a2, a3 and a4 are {b1}, {b2,

b2b3}, {b4b5, b4b5b4b5} and {b6}, respectively. Note

that in a3 there are infinite paths but L makes the

number of paths that should be tested finite.

Step 4. A set of all the paths in the actions that

accompany stsx, which is hereinafter referred to as

PSTSx, is derived by the following equation:

 PSTSx=∏ PSTx,y
#stsx
y=1 (1)

#stsx means the length of stsx, and PSTx,y expresses a

set of all the paths in the action that accompanies the

yth state transition in stsx. For example, when L is {0,

1}, PSTS for βε in Fig. 1 is {<b2, b4b5>, <b2, b4b5b4b5>,

<b2b3, b4b5>, <b2b3, b4b5b4b5>}.

Step 5. A set of all the measuring objects for N-SAPL,

which is hereinafter referred to as MSAPN,L, is derived

by the following equation:

 MSAPN,L=⋃ F({stsx} × PSTSx)
|MSN|

x=1
 (2)

F(S) is a feasibility evaluation function, and it

removes infeasible elements from a given set S. The

feasibility in EFSM models can be evaluated by using

metaheuristics3, symbolic execution, and manpower.

For example, |MSAP1,{0,1}| for Fig. 1 is 28 as shown in

Table 1, if there are no infeasible ones. When given

test cases cover 14 elements in the MSAP1,{0,1}, 1-

SAP{0,1} test coverage achieves 50% (14/28). Note

that the same paths often appear in different state

transition sequences, but they are distinguished in

MSAPN,L. For example, <βζ, <b2b3, b6>> and <δζ,

<b2b3, b6>> are strictly distinguished. Of course, the

same state transition sequences with different paths

are also distinguished in MSAPN,L. For example, <αβ,

<b1, b2>> and <αβ, <b1, b2b3>> are strictly

distinguished. Additionally, the same basic blocks

that appear in different state transitions are also

distinguished. For example, <εγ, <b4b5, b4b5b4b5>>

and <εγ, <b4b5b4b5, b4b5>> are strictly distinguished.

4. Discussion

We developed a tool for preliminary experiments, and

tried to automatically generate the measuring objects of

N-SAPL from Fig. 1. The overview of its result is shown

in Table 2. Note that we added special measuring objects

in Step 2, and assumed that there are no infeasible ones

in Step 5. This result indicates that the number of

measuring objects rapidly becomes larger when a larger

number and set are given to N and L respectively. For

example, the following ways can be adopted to address

this problem:

• Remove redundant measuring objects according to
the results of fault-proneness prediction using bug-
fixing record9, identifiers in source code10, and so
on.

• Limit L to typical loop frequencies that should be
tested, such as 0, 1, and multiple times.

• Automate the generation and execution of test
cases that satisfy N-SAPL.

Test engineers will need a tool especially to generate

the test cases from their EFSM models. The difficulty of

constructing the tool is in (a) solving feasibility problems

on state transitions and actions, and (b) minimizing the

number of the test cases. One of effective techniques for

addressing (a) and (b) is metaheuristics3. For example,

the following algorithm will enable to generate test cases

that satisfy N-SAPL:

Step 1. Search (execute) a given EFSM model

randomly to find test case candidates. This step

ensures the feasibility of test cases.

Step 2. Evaluate each candidate by using a fitness

function. Good candidates include many new

measuring objects without redundancy. If there are

not good ones, modify the search policy as necessary,

and then go to Step 1.

Step 3. Select the best candidates as a subset of final test

cases. If the set of final test cases does not cover

Table 1. Measuring objects of 1-SAP{0,1} in Fig. 1.

state

trans.

seq.

all paths in actions

that accompany the state trans. seq.

αβ <b1, b2>, <b1, b2b3>

αγ <b1, b4b5>, <b1, b4b5b4b5>

βε <b2, b4b5>, <b2, b4b5b4b5>, <b2b3, b4b5>, <b2b3, b4b5b4b5>

βζ <b2, b6>, <b2b3, b6>

γδ <b4b5, b2>, <b4b5b4b5, b2>, <b4b5, b2b3>, <b4b5b4b5, b2b3>

δε <b2, b4b5>, <b2, b4b5b4b5>, <b2b3, b4b5>, <b2b3, b4b5b4b5>

δζ <b2, b6>, <b2b3, b6>

εβ <b4b5, b2>, <b4b5b4b5, b2>, <b4b5, b2b3>, <b4b5b4b5, b2b3>

εγ <b4b5, b4b5>, <b4b5, b4b5b4b5>, <b4b5b4b5, b4b5>, <b4b5b4b5,

b4b5b4b5>

Table 2. Number of measuring objects for N-SAPL in Fig. 1.

N
L

{0} {0, 1} {0, 1, 2} {0, 1, 2, 3}

0 8 10 12 14

1 16 28 42 58

2 28 74 140 226

3 52 198 476 922

4 92 526 1604 3674

5 164 1390 5384 14618

176

Tomohiko Takagi, Koichiro Sakata, Kouichi Akiyama

 The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

enough measuring objects, modify the search policy,

and then go to Step 1.

5. Conclusion and Future Work

 In this paper, we have proposed N-SAPL test coverage

criterion for EFSM to comprehensively test the

combination of state transitions and accompanying

actions in software. A characteristic of this study is to

blend a functional state-based testing technique and a

structural path testing technique. The latter plays an

important role in testing of the actions.

The satisfaction of N-SAPL results in the satisfaction

of N'-SAPL', if N'<N∧L'⊂L is satisfied. When test

engineers give a larger number to N and a larger set to L

in order to achieve higher software reliability, they will

need to create a larger number of test cases to cover the

measuring objects of N-SAPL. It will not be so easy for

test engineers to manually calculate N-SAPL coverage

and create test cases that satisfy N-SAPL. Therefore we

will plan to develop a prototype tool to support such tasks.

One of challenges in future work is to develop a

technique to automatically find infeasible measuring

objects in EFSM models, which will make it possible to

get precise N-SAPL coverage.

Acknowledgements

This work was supported by JSPS KAKENHI Grant

Number JP17K00103.

References

1. M. Utting, A. Pretschner, B. Legeard, "A taxonomy of

model-based testing approaches", Journal of Software

Testing, Verification and Reliability, Vol.22, No.5,

pp.297-312, Aug. 2012.

2. Object Management Group, "Unified Modeling

Language", https://www.uml.org/.

3. A. Kalaji, R.M. Hierons, S. Swift, "Generating Feasible

Transition Paths for Testing from an Extended Finite State

Machine (EFSM)", Proc. of International Conference on

Software Testing Verification and Validation, IEEE,

Denver, CO, United States, pp.230-239, April 2009.

4. T.S. Chow, "Testing Software Design Modeled by Finite-

State Machines", IEEE Transactions on Software

Engineering, Vol.SE-4, No.3, pp.178-187, May 1978.

5. B. Beizer, "Software Testing Techniques", 2nd edition,

Van Nostrand Reinhold, New York, NY, United States,

1990.

6. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, M.

Verhoef, "Validated Designs for Object-Oriented

Systems", Springer-Verlag London, 2005.

7. T. Takagi, K. Sakata, "Test-First for Abstracted Behavior

of Software Using Extended Finite State Machine", Proc.

of International Symposium on Software Reliability

Engineering, IEEE, Coimbra, Portugal, pp.159-160, Oct.

2020.

8. K. Akiyama, "A Problem of N-Switch Coverage Testing

and Its Solution", Proc. of Software Symposium, Gifu,

Japan, 7 pages, July 2013 (in Japanese).

9. J.A. Whittaker, J. Arbon, J. Carollo, "How Google Tests

Software", Addison-Wesley Professional, Boston, MA,

United States, 2012.

10. O. Mizuno, N. Kawashima, K. Kawamoto, "Fault-Prone

Module Prediction Approaches Using Identifiers in Source

Code", International Journal of Software Innovation,

Vol.3, Issue 1, pp.36-49, 2015.

Authors Introduction

Dr. Tomohiko Takagi
He received the B.S., M.S. and

Ph.D. degrees from Kagawa

University in 2002, 2004 and 2007,

respectively. He became an

assistant professor in 2008, and a

lecturer in 2013 in the Faculty of

Engineering at Kagawa University.

Since 2018 he has been an

associate professor in the Faculty

of Engineering and Design at

Kagawa University. His research interests are in software

engineering, particularly software testing.

Mr. Koichiro Sakata
He received the B.S. degree from

Kagawa University in 2020. He is a

master's student in the Graduate

School of Engineering at Kagawa

University. His research interests

are in software engineering,

particularly software testing.

Dr. Kouichi Akiyama
He received the Ph.D. degree from

Kagawa University in 2013. Since

2021 he has been an internal

appraiser of CMMI. His research

interests are in software

engineering, particularly software

testing.

177

https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://www.uml.org/
https://www.uml.org/
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1109/ICST.2009.29
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://dl.acm.org/doi/10.5555/79060
https://dl.acm.org/doi/10.5555/79060
https://dl.acm.org/doi/10.5555/79060
https://dl.acm.org/doi/book/10.5555/1044891
https://dl.acm.org/doi/book/10.5555/1044891
https://dl.acm.org/doi/book/10.5555/1044891
https://doi.org/10.1109/ISSREW51248.2020.00061
https://doi.org/10.1109/ISSREW51248.2020.00061
https://doi.org/10.1109/ISSREW51248.2020.00061
https://doi.org/10.1109/ISSREW51248.2020.00061
https://doi.org/10.1109/ISSREW51248.2020.00061
https://www.sea.jp/ss2013/accepted_papers.html#s1
https://www.sea.jp/ss2013/accepted_papers.html#s1
https://www.sea.jp/ss2013/accepted_papers.html#s1
https://dl.acm.org/doi/book/10.5555/2207802
https://dl.acm.org/doi/book/10.5555/2207802
https://dl.acm.org/doi/book/10.5555/2207802
https://doi.org/10.4018/ijsi.2015010103
https://doi.org/10.4018/ijsi.2015010103
https://doi.org/10.4018/ijsi.2015010103
https://doi.org/10.4018/ijsi.2015010103

