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Abstract 

The motions of three bodies like Sun-Asteroid-Jupiter system or triple star system are formalized as hierarchical three 

body problem.  When the third body orbits around the rest in a highly inclined elliptic orbit, the system undergoes 

the oscillation, called the Kozai oscillation, where the eccentricity may increase with decrease of the inclination of 

the orbital plane.  

While the Kozai oscillation seems to be a key process in orbital evolution, including disruption of triple system, its 

reflection into actual trajectories is quite complicated to analyze.  For this reason, we try to map these trajectories 

into a secular perturbation model with data assimilation and demonstrate the extraction of state and its transition 

(libration to circulation and vice versa) as the Kozai oscillation. 

Keywords: List four to six keywords which characterize the article. 

1. Introduction

The motion of gravitationally interacting three bodies is 

called the three-body problem and known to be 

analytically unsolvable unlike to the two-body problem, 

in which the bodies draw elliptic orbits.   There are two 

contrastive types in motion of three bodies.  In one type, 

the bodies interact each other in an extremely 

complicated way and often end in the disruption into a 

pair of bodies and the rest one.  This type of motion is 

generally called chaotic.  The other type of motion is that 

bodies draw hierarchical elliptic orbits, each of which is 

similar to that of two-body problem, with gradual change 

in its shape.  The latter may be realized when there is an 

enough contrast in the masses (e.g. the Sun occupies 

99.8% of the entire solar system’s mass) or in orbital radii 

of the inner and outer orbits.    

Our interest is in between the two.  If two elliptic 

orbits (a schematic illustration shown in see Fig. 1) are 

initially placed close to each other, the outer orbit evolve 

to a hyperbolic orbit and the third-body escapes on it. 

How close the system can be allocated without such a 

disruption of the system is called stability limits and has 

been studied since Harrington1.   While the contribution 

of Kozai mechanism, explained later, to the instability of 

hierarchical triple systems has been pointed out2, the 

process until the system are finally broken is still unclear. 

Partially, the difficulty comes from a necessity of a long 

numerical orbit to see the sign of instability as well as a 

complicated process being involved till the disintegration 

of the system.  In this study, we construct a mapping from 
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the motion of three bodies in a Cartesian flame into 

orbital elements by utilizing the most simple secular 

perturbation model as auxiliary dynamical system. 

2. Method 

2.1. Equation of Motion 

Let m0, m1 and m2 be the masses of bodies gravitationally 

interacting three bodies.  We introduce Jacobian 

coordinates to describe their motion, that is, r1 is the 

vector from m0 to m1, and r2 from their barycenter to m2.  

Equations of motion of these bodies are given by 

 𝜇𝑖
∗ 𝑑2𝒓𝑖

𝑑𝑡
= −

𝐺𝜇𝑖
∗ ∑ 𝑚𝑗

𝑖
𝑗=0

||𝒓||2 +
𝜕𝑅

𝜕𝒓𝑖
  (1) 

(𝑖 = 1,2) with disturbing function 

𝑅 =
𝐺𝑚0𝑚1

||𝒓01||
+

𝐺𝑚2𝑚0

||𝒓02||
−

𝐺𝑚2(𝑚0+𝑚1)

||𝒓2||
,  

where vectors 𝒓𝑖𝑗  from 𝑚0 to 𝑚1 and reduced masses 

𝜇1
∗ =

𝑚0𝑚1

𝑚0+𝑚1
, 𝜇2

∗ =
𝑚2(𝑚0+𝑚1)

𝑚0+𝑚1+𝑚2
. 

 

 
 

2.2. Secular Perturbation and Kozai Oscillation 

A solution r1(t) and r2(t) of the equations of motion Eq. 

(1) defined above generally draw nearly elliptic orbits in 

short-term, changing gradually their shape change in 

long-term.  When our interest is long-term evolution of 

the system, it is good to rewrite the equations of motion 

with respect to variables describing the orbital shapes, 

called orbital elements, under a certain approximation 

neglecting short-term variation. 

Orbital elements consist of 𝑎𝑖 , 𝑒𝑖 , 𝑞𝑖: = 𝑎𝑖(1 −

𝑒𝑖), 𝜔𝑖 ,  corresponding to ri and its derivative, as well as 

angle 𝐼 between the orbital planes on which r1 and r2 are 

(see Fig.1 for geometrical definitions). With these 

variables, the disturbing function is rewritten as 

 𝑅 =
𝐺𝑚2𝛼2

16𝑎2
[(3 cos2 𝐼 − 1)(2 + 3𝑒1

2 + 3𝑒2
2) +

                  15𝑒1
2 sin2 𝐼 cos 2𝜔1],  (2) 

where 𝛼 ≔ 𝑎1/𝑎2  and 𝑒𝑖  are kept up to their second 

order.  Equation (1) is accordingly transformed to the first 

order differential equations w.r.t. these orbital elements, 

called planetary equations (Note that we have derived 

Eq.(2) using the algorithm5 for computer algebra aiming 

at a higher order expansion for future study.  For this 

reason, its exact form is slightly different than its 

traditional form4).   

The equations derived by Eq. (2) has only solutions 

such that 𝜔1 , indicating the direction of the pericenter 

measured from the intersection of two orbital planes, 

circulates (i.e. 𝜔1 takes all possible values from  0∘ 

to 360∘) if the inclination angle I of one plane against the 

other, is small, whereas another type of solutions exists 

for sufficiently high I, where 𝜔1  oscillates a limited 

range including +90∘  or −90∘ .   The former type of 

motion is called the circulation, and the latter the libration.   

When I is high so that the libration is possible, 𝑒1 

significantly rise up or down along with the entire period 

of 𝜔1 , as well as I varies anti-correlatedly to 𝑒1.  This 

oscillation of 𝑒1 and I is called Kozai mechanism4, which 

is originally studied by Yoshihide Kozai for the cases of 

𝑚1 → 0. 

2.3. Introduction of Stochastic change 

 While we aim at extract such a process into the 

disintegration as a variation of orbital elements and 

consider mapping the outcome of the full model Eq. (1) 

to the perturbation model Eq. (2), the discrepancy is not 

small between them.  For this reason, we introduce a 

stochastic process and allow the solutions of Eq. (2) to 

jump at each times step by adding the realization of 

random variables.  Specifically, an extended system 

(𝑒1,𝑛, 𝜔1,𝑛) = RK4(𝑒1,𝑛−1 + 𝛿𝑒1,𝑛, 𝜔1,𝑛 + 𝛿𝜔1,𝑛)  (3) 

𝛿𝑒1,𝑛 ∼ 𝑁(0, 𝜎𝑒
2), 𝛿𝜔1,𝑛 ∼ 𝑁(0, 𝜎𝜔

2), 
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is used instead of Eq.(2), where RK4( 𝑒1 , 𝜔1)  is a 

propagator which advances the time by a given amount 

Δ𝑡, following to the planetary equations generated from 

Eq. (2),  with parameters Δ𝑡 = 1, 𝜎𝑒 = 𝜎𝜔 2𝜋⁄ = 0.002.   

The discrepancy in ( 𝑒1 , 𝜔1)  between Eqs. (1) 

and(3) are measured by the likelihood for a single time 

point based on a normal, 

 ln 𝑝(𝑒1,𝑛
obs, 𝜔1,𝑛

obs|𝑒1,𝑛, 𝜔1,𝑛) =  

               (𝑒1,𝑛
obs − 𝑒1,𝑛)

2
+ (𝜔1,𝑛

obs − 𝜔1,𝑛)
2

/𝜋2 . (4) 

Here we regard the outcome of Eq. (1) as observation 

data (denoted by 𝑒1,𝑛
obs, 𝜔1,𝑛

obs), and that of Eq. (3) as the 

latent variables (𝑒1,𝑛, 𝜔1,𝑛).   Eqs. (3) and (4) form the 

state space model, to which sequential Bayesian 

estimation algorithms6,7 are applicable.   Of these 

algorithms, we implement the mapping from the “data” 

and the “latent” using Particle Filtering6,7.   

3. Results 

We will demonstrate how an exact solution of the 

equations of motion Eq. (1) is mapped to the secular 

perturbation model, and that a transition between the 

libration and the circulation are identified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Mapping of a solution of equations of motion to secular perturbation model.  The solution of 

Eq (1) is shown in black (full model), corresponding mapped trajectories to secular perturbation 

model using particle filtering in red (filtered), and propagation from the last filtered time t = 93,500 

in blue (prediction).   Parameters are  𝑚1 = 0.1, 𝑚0 = 𝑚2 = 1,  𝑞2/𝑎1 = 3.66,  𝑒1 = 𝑒2 = 0.1, 𝐼 =
50∘, 𝜔1 = 0∘, 𝜔2 = 90∘.  
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An example shown in Fig. 2 includes a transition 

from the libration the circulation, followed by an 

elevation of 𝑒1  in Fig. 3.  Before going to a detailed 

inspection of these figures, we remark on the choice of 

the configuration.  Masses and initial orbital parameters 

are chosen as 𝑚1 = 0.1, 𝑚0 = 𝑚2 = 1,  orbital 

separation  𝑞2/𝑎1 = 3.66, eccentricities  𝑒1 = 𝑒2 = 0.1, 

and mutual inclination 𝐼 = 50∘ (the entire parameters are 

shown in the caption) so that the system undergoes the 

1:6 mean motion resonance (MMR).  MMRs may cause 

orbital instability and in fact we have observed a 

disruption of the system at the 1:6 MMR under more 

massive 𝑚1  (specifically 𝑚1 = 1).  The process to the 

disruption is as follows: 𝑒1  suddenly increases before 

increase of 𝑒1 with 𝑒2 after its long lasting quasi periodic 

variation, the increase of  𝑒1  forces the increase of  𝑒2, 

by which  𝑎2  increases to go a hyperbolic orbit.  

Interestingly, the increase of 𝑒1  often occurs when the 

system in a libration around 𝜔1 = ±90∘ .   This is the 

reason why we consider Kozai mechanism enhances the 

instability first realized by MMR.  While the initial 

condition for Fig. 2 is chosen Kozai mechanism and a 

MMR coexists, we restricted ourselves rather less 

massive  𝑚1 = 0.1  because the setting of  𝑚1 = 0.1 

provides too strong perturbation to adequately describe 

the motion with our simple perturbation model.   Though 

under this lowered mass the system disruption does not 

occur, an elevation of 𝑒1  is expected, which is a 

necessary step to the system disintegration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  The same orbit as in Fig. 2, but a later time range being covered. 
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First we confirm that the transition to the circulation 

is captured via mapping.  In Fig. 2, a quasi-periodic 

sustains for t < 94,000, then range of  𝑒1 gradually

increases to reach 0.8 at maximum.  There is a transition 

from libration around 𝜔1 = −90∘, when 𝑒1 tends to raise

up.  We use particle filtering to learn the time course of 

( 𝑒1, 𝜔1 ) provided by the solution of Eq. (1).  The

trajectories of respective particles forming filtered 

distribution are shown in red, followed by trajectories 

propagated from the last filtered state (t = 93,500) 

without stochastic jumps (i.e. just solving planetary 

equations), shown in blue.   Time t = 93,500 is close to 

the transition to circulation. Some propagated trajectories 

keep in the libration, while others transit to circulation. 

Hence, we can say that our perturbation model with 

stochastic jumps can capture the transition between the 

two states.  The ratio of the numbers of orbits in the two 

mode may be interpreted an probabilistic evaluation of 

which state the orbit is in, when a large number of orbits 

need to be classified in a systematic way. 

Continuing the filtering and the prediction after the 

circulation, we see that the perturbation model catches up 

the increase of 𝑒1  and shorted period of the Kozai

oscillation.  However, the maximum value of  𝑒1 given

by the model is that out full simulation outcome, which 

reaches to 0.8.  Higher order terms neglected here may be 

necessary to improve the agreement. 
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