
 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

A Proposal of a Software Defect Predication System

Using SOM

Yoshihiro Kita

Faculty of Information Systems, University of Nagasaki,

1-1-1 Manabino, Nagayo, Nishisonogi , Nagasaki 851-2195, Japan

Kazuki Ueda

Nihon knowledge Co.,Ltd. 3-19-5 Kotobuki, Taito, Tokyo 111-0042, Japan

Kiyotaka Sakurai

Nihon knowledge Co.,Ltd. 3-19-5 Kotobuki, Taito, Tokyo 111-0042, Japan

E-mail: kita@sun.ac.jp, ueda@know-net.co.jp, sakurai@know-net.co.jp

Abstract

The goal of software testing is to detect all latent defects. However, it is difficult to know how many latent defects

remain and where they are hidden. In this research, we propose a system that analyzes the characteristics and

tendencies of already detected defects and predicts where the latent defects are likely to be. Specifically, the system

inputs the data of detected defects into a Self-Organizing Map (SOM) and predicts the locations that contain many

defects from this map. To confirm the validity of this proposal, we input past defect data into the SOM, analyze the

trend of defects, and evaluate the predictability of the latent defects.

Keywords: software testing, exploratory testing, defect predication, self-organizing map (SOM).

1. Introduction

The goal of software testing is to detect all latent defects,

but it is impossible to achieve that goal1. However,

residual defects are causes of serious lost, so it is

desirable to remove defects as much as possible.

Exhaustive or exploratory testing methods are needed

to find latent defects in software. Especially in

exploratory testing, it is difficult to the location of latent

defects while deciding where to search next.

Mr. Ueda as the second author, proposed the testing

method “FaRSeT (Flexible and Rapid Software Test)” 2

which is an exploratory testing method that utilizes test

analysis by mind mapping to cope with projects have

short delivery time, and frequent specification changes.

This method reduces the time and effort required to

prepare test cases in advance and allows us to prioritize

important searching points for testing while obtaining the

agreement of stakeholders. However, this method has

two problems as follows.

• The searching points are not possible to determine

as important, cause no defects occurred in the tests

that are not executed.

• It is difficult to assume the remaining defects by the

number of defects that are found only.

38

Yoshihiro Kita, Kazuki Ueda, Kiyotaka Sakurai

 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

In this paper, we propose a method “FaRSeT-#”

which infer the important searching points, and a defect

predication system that incorporates this method. In order

to infer the important searching points, we use Self-

Organizing Map (SOM) 3, and visualize them on a two-

dimensional map.

2. Related Works

2.1. FaRSeT

FaRSeT (Flexible and Rapid Software Test) 2 is a flexible

and rapid testing method that uses a mind-mapped job

analysis and an exploratory testing matrix to determine

the priority of searching points for testing in a current

project. The process of FaRSeT is shown as follows.

(i) Conduct job analysis using a mind map.

(ii) Create the test charters which are broken down from

the quality characteristics of software, based on the

job analysis in step (i).

(iii) Create the table which is named “the exploratory

testing matrix”, with the test charters as the

horizontal axis, and the function as the vertical axis.

(iv) Define the intersection as a “session”, of each item

in the exploratory testing matrix, and execute the

exploratory testing while obtaining the agreement

of stakeholders for high importance sessions.

(v) If defects are found in Step (iv), the number of

defects should be listed in the session of the

exploratory testing matrix.

(vi) Repeat Step (iv) to Step (v) while deciding the next

session for the exploratory testing based on the

number of defects listed in the session. For example,

in Fig.1, the sessions colored in red, are the next

session for the exploratory testing.

2.2. Self-Organizing Map

Self-Organizing Map (SOM) 3 is an unsupervised

competitive neural network. SOM is a machine learning

model that represents the similarity of given

multidimensional data on a two-dimensional map as

shown as Fig. 2.

SOM consists of two layers, an input layer, and an

output layer. The input layer contains nodes with input

vectors. The number of their nodes is the same as the

number of samples of data used as input. The output layer

Fig.2. The learning process of SOM

Fig.1. A sample of an exploratory testing matrix

39

 A Proposal of a

 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

contains nodes which are arranged hexagonal

honeycomb, and each node initially holds a random

reference vector. The learning process of SOM is shown

as follows.

(i) Compare an input vector to all the reference vectors

in the output layer.

(ii) The node which has the most similar reference

vector to the input vector is defined “The most

suitable fitting node”.

(iii) The reference vector of the nodes which are

adjoined the most suitable fitting node, is weighted

to be close the input vector.

(iv) Iterate the learning process until the learning times

is satisfied.

(v) After the iteration finished, the vectors of input

layer are mapped on the most suitable fit of itself.

The nodes of input layer are placed close to the nodes

that are similar to each other, and are placed far from the

nodes that are not similar to each other. Therefore, the

similarity between the samples is visualized in two-

dimensional space as the distance between the nodes of

input layer.

3. Software Defect Predication System

In this paper, we propose a method “FaRSeT-#” which

infer the important searching points, and a defect

predication system that incorporates this method.

FaRSeT-# is an extended method of FaRSeT by

incorporating SOM. The vectors of all session from the

exploratory testing matrix input to SOM. The mapped

nodes of session group into colored clusters in SOM. In

this way, the sessions belonging to the same cluster are

similar, which means that they have the commons: defect

tendencies, target areas of search, and effective testing

methods. The testers analyze the sessions of each cluster,

and predict the priority of searching points, and the

location of latent defects

Fig. 3 shows the results of training the exploratory

test matrix in Fig. 1 using SOM, mapped to a two-

dimensional map. For example, the label "A5" represents

the row "Function A" and the column "Test Charter 5

(Interoperability in this case)" in the exploratory test

matrix.

Fig.3. SOM with the session of the exploratory testing matrix in Fig. 1 as input

40

Yoshihiro Kita, Kazuki Ueda, Kiyotaka Sakurai

 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

The data to be input to the SOM is the session

information consisting of the following items:

• Metrics related to the function

(e.g., size of the function, skills of the developer, etc.)

• Metrics related to test charter

(e.g., importance of quality characteristics)

• Metrics related to sessions

(e.g., number of defects, recent test results, test

execution time, skills of testers, etc.)

The nodes on the SOM are divided into clusters by k-

means method 4, and each cluster is color-coded with six

colors (RED, BLUE, GREEN, YELLOW, CYAN, and

MAGENTA). In Fig. 3, the blue area indicates that the

scale of the function is large, and the green area indicates

that the importance of the quality characteristic is high.

In this map, the lower right and upper right areas are

darker in color, and the center to upper left areas are

lighter in color.

we analyze the priority of the clusters from the colors

of this map, the priority order is determined as follows

(i) BLUE

(ii) YELLOW

(iii) RED

(iv) CYAN and MAGENTA

(v) GREEN

Next, all sessions colored in each cluster to the

exploratory testing matrix in Fig.1, which is shown in

Fig.4. Also, Fig. 5 shows the priority as a gray scale

shading. The darker sessions are the higher the priority

for the next test.

Comparing Fig. 1 and Fig. 5, it can be confirmed that

this method enables a finer prediction of the session

containing the defect and makes it easier to determine the

next area to search.

4. Evaluation of validity

We applied this system to a development project in order

to confirm the validity of the proposed method. First, we

analyze the sessions that contain defects from the results

of the exploratory testing by using our proposal system.

Then, we perform the next exploratory testing, and

analyze the number of defects for each session. Finally,

these results are compared with the results of our

proposal system.

Table.1 is shown the number of found defects for each

testing and priority order to search in next testing. The priority

predicted by our proposal was highest for GREEN, followed by

MAGENTA and RED. CYAN had no defects found, but its

Fig.4. An exploratory testing matrix with sessions colored

by cluster.

Fig.5. An exploratory testing matrix with a gray scale

representing the priority of the searching points.

41

 A Proposal of a

 © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022

priority was predicted to be close to MAGENTA, so it was

ranked higher than BLUE and YELLOW.

The results of the next exploratory test showed that

the defects were found in GREEN and MAGENTA as

predicted. Defects were also found in CYAN, where no

defects had been found. This indicates that the proposed

method can predict the defects. However, no defects were

found in RED, which is the third priority. This point

needs to be verified in the future, including the selection

of the data to be input to SOM.

5. Conclusion

In this paper, we proposed a method “FaRSeT-#” which

infer the important searching points, and a defect

predication system that incorporates this method.

We confirmed that it can objectively determine the

search location and clearly state the basis for the decision

mechanically mapping and clustering the data by the

system using FaRSeT-#. In the future, it is necessary to

verify the selection of data to be input to the SOM.

References

1. “Certified Tester Foundation Level Syllabus Version 2018

V3.1”, International Software Testing Qualifications

Board, 2018.

2. K. Ueda, J. Tanba, and S. Kudo, “Effort of application of

test method “FaRSeT (Flexible and Rapid Software Test)”

for short-term delivery development project”, Software

Quality Symposium 2018 (SQiP2018), pp.1-8, 2018 (in

Japanese).

3. T. Kohonen, “Self-Organizing Maps”, Springer-Verlag,

2001.

4. D. Steinley, M.J. Brusco, “Initializing k-means Batch

Clustering: A Critical Evaluation of Several Techniques”,

Journal of Classification, Vol.24, No.1, pp.99-121, 2007.

Authors Introduction

Dr. Yoshihiro Kita

He received his Doctor's degree from

the Department of Engineering,

University of Miyazaki, Japan in

2011. He belongs to University of

Nagasaki, Japan. His research area is

biometrics, mobile security, and

software testing.

Mr. Kazuki Ueda

He belongs Nihon Knowledge

Co.,Ltd. His job is chief executive

officer of verification technology.

He research interest in development

of quality assurance technology for

test automation, exploratory testing,

and AI products.

Mr. Kiyotaka Sakurai

He belongs the officer of

verification technology, Nihon

Knowledge Co.,Ltd. He verify the

automatical tools, and research the

operatable automatical tool by low-

code.

Table.1. The number of found defects for each testing and

priority order to search in next testing.

Cluster

Number of

found

defects

(Average of

sessions)

Priority

order to

search in

next testing

Number of

found

defect in

next testing

(Average of

sessions)

RED 1.50 Third 0.00

BLUE 0.90 Fifth 0.06

GREEN 3.00 First 0.50

YELLOW 0.00 Fifth 0.00

CYAN 0.00 Fourth 0.09

MAGENTA 1.70 Second 0.11

42

https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.juse.jp/sqip/symposium/archive/2018/day1/files/A2-2_ronbun.pdf
https://www.juse.jp/sqip/symposium/archive/2018/day1/files/A2-2_ronbun.pdf
https://www.juse.jp/sqip/symposium/archive/2018/day1/files/A2-2_ronbun.pdf
https://www.juse.jp/sqip/symposium/archive/2018/day1/files/A2-2_ronbun.pdf
https://www.juse.jp/sqip/symposium/archive/2018/day1/files/A2-2_ronbun.pdf
https://link.springer.com/book/10.1007/978-3-642-97610-0
https://link.springer.com/book/10.1007/978-3-642-97610-0
https://link.springer.com/article/10.1007/s00357-007-0003-0
https://link.springer.com/article/10.1007/s00357-007-0003-0
https://link.springer.com/article/10.1007/s00357-007-0003-0

