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Abstract 

We discuss the development of a vision-based plant phenotyping system based on a novel type of robotic system 

called a food computer. The food computer used in this project is called the GrowBot. It has a host of sensors to help 

analyse the growth chamber including a Raspberry Pi camera. The project revolved around developing a system to 

segment the plant canopy from its background and analyse nutrient deficiencies from the images taken by the camera. 

The pilot project investigated how a segmentation model called U-Net could be used to study the images. One of the 

drawbacks of many existing vision-based plant phenotyping systems is that their convolutional neural networks 

(CNNs) were trained to analyse very ideal images of individual leaves. This pilot project tried to address that issue, 

while at the same time explored how to train the neural networks to learn segmentation from a small image dataset.  

Keywords: Convolutional Neural Networks, Cyber Agriculture, Food Computing, Image Segmentation, Plant Health 

Monitoring, U-Net 

1. Introduction

During the process of plant growth, plants need to be 

provided with various nutrients. Proper nutrition is a vital 

factor that strongly determines many aspects of a plant’s 

life cycle, such as growth rate, flowering, fruit 

development, and fertilization. A lack of one or more 

nutrients causes diseases in plants that affect crop yield. 

Thus, identifying a nutrient deficiency or disease 

correctly when it first appears is a crucial step for 

efficient disease management. Nutrient deficiencies 

manifest themselves as unusual appearances on a plant - 

especially on its leaves (see figure 1). 

These symptoms can be identified by visual examination. 

However, such an analysis relies heavily on the presence 

of one or more individuals with domain expertise. It is 

also impractical in large-scale studies. Hence, a number 

of studies have made an effort to identify nutrient 

deficiencies and diseases by analysing images of the 

leaves using convolutional neural networks (CNNs). 

A number of studies focused on performing disease 

classification using the PlantVillage dataset. In the 

PlantVillage dataset, the images were taken under ideal 

conditions with each image containing a single leaf, 

facing upwards, on a homogeneous background. The 

studies used both transfer learning and train-from-scratch 

approaches to learn how to predict the crop-disease pairs 
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in the images from the PlantVillage dataset. It was 

reported that the ideal conditions that the diseased leaves 

were photographed were a drawback for real-world 

applications. The requirement of a more diverse set of 

training examples was stressed upon [1][3]. 

Apart from disease classification, deep learning models 

have also been applied for the automatic diagnosis of 

plant disease severity. A fine-tuned VGG16 network was 

used to classify images of healthy apple leaves and apple 

leaf black rot images from the PlantVillage dataset that 

were further annotated with severity labels - early-stage, 

middle-stage, or end-stage [2]. 

 

Marni Tausen et al. [4] and Ke Lin et al. [5] used a U-net-

based plant segmentation model to extricate clover plants 

(Trifolium repens) from their background and to segment 

powdery mildew on cucumber leaf images, respectively. 

2. GrowBot Hardware and Software 

The GrowBot [6] (see figure 2) is a robotic system that 

can control the growth of natural life in the form of edible 

food plants. It allows its users to parameterize growth 

conditions for plants in terms of temperature, light cycle, 

the colour of grow light, fertilization, etc. Such a 

parameterization is called a recipe. Different recipes 

bring about different growth patterns in plants in the 

GrowBot. 

 

Inside the growth chamber, there is room for a water tray 

with a lid with 16 holes arranged in a 4x4 grid (see figure 

3). The seeds of the plants can be sown into small 

rockwool cubes that are laid down into cups. The cups 

are then placed into the aforementioned holes. On the 

front side of the chamber is a door, which can be 

tightened when closed to ensure an airtight space inside 

the chamber. 

Fig. 2.  The GrowBot  

 

The GrowBot is equipped with the OV5647 CMOS 

image sensor, which is connected to the Raspberry Pi 4 - 

the main processor of the GrowBot. 

Fig. 3.  Water tray in the growth chamber 

3. Experiments 

The first step of the experiments was to induce a 

combination of heat and nutrient stresses. For inducing 

heat stress, the growth chamber was maintained between 

29ºC-35ºC. For inducing nutrient stress, nutrient 

solutions, each deficient in the individual elements, were 

created. The following stress experiments were 

performed: 

• Heat and Magnesium (Mg) stress - Mg deficient 

solution was used 

• Heat and Potassium (K) stress - K deficient 

solution was used 

• Control I experiment - All nutrients were 

provided, and the temperature was maintained 

between 29ºC - 35ºC 

 

 Fig. 1.  K defiency in Italian basil (left), Mg defiency in Italian 

basil (right) 

26



Convolutional Neural Network for 

 

                            © The 2022 International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, 2022 

• Control II experiment - All nutrients were 

provided, and the temperature was maintained 

between 24ºC - 29ºC 

Images of the growth chamber were taken during all of 

these experiments. The training and test set split for the 

image data is shown in table 1. The train set had 89 

images, while the test set had 42 images. The lighting 

combinations and intensities used while taking the 

images are shown in table 2. For each stress experiment, 

two plants were used. To record our dataset, we had 

placed the plants in unique locations for each stress test. 

In addition to the varying light intensities, changing the 

locations of the plants helped generate a lot of variety in 

the dataset. All the images used in the training, validation, 

and test sets were normalised, and rigid augmentations - 

horizontal flip, vertical flip, and random rotations were 

induced in the training images.  

 

Table 1: Train and test set splits for the project 

 Training set Test set 

Name of 

experiment 

Number of 

images 

Number of 

images 

Heat and general 

nutrient stress 

14 9 

Heat and Mg 

stress 

32 9 

Heat and K stress 21 9 

Control I 11 8 

Control II 11 6 

 

Table 2: Lighting setups used in the project 

Type of coloured light Intensities 

Full spectrum 100% 

Full spectrum 100% 

Full spectrum 60% 

Full spectrum and UV 50% (each) 

Full spectrum and UV 30%, 45% 

 

Our goal was to segment the plant canopy from its 

background and then study the variation of the hue values 

of the segmented image, as variation in hue has been 

linked to different nutrient deficiencies [4]. For 

performing the segmentation, we used a U-Net 

architecture which has an encoder-decoder structure (see 

figure 5). The encoder part of the U-net has a typical 

CNN-like architecture. This is the part of the U-Net that 

captures contextual information, while the decoder helps 

in localising the features [7]. 

 

The first step before training was to annotate the images, 

which was done using a tool called ImageJ [8]. One of 

the challenges with using ImageJ was that when the 

annotated masks were applied to the image, the resultant 

image in many cases was noisy around the edges of the 

plant canopy (see figure 4 (left)). So, the morphological 

opening operation was used to remove the noise along the 

edges of the plant canopy in the mask before applying it 

to the image. In figure 4 (right), we can see the results of 

applying morphological opening on a mask. 

4. Results and conclusion 

We tested three models of the U-Net, see Table 3, and the 

best results on the training and validation sets were 

obtained with model 2. The training-validation split was 

Fig. 5.  Structure of the U-Net used in this project 

 

 

Fig. 4.  Noisy images (left), denoised image (right) 
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75% and 25%, respectively. Stochastic gradient descent 

(SGD) was used as the optimiser with a batch size of 1.  
 
Table 3: Details of the three models used 

 Model details 

Model Architecture 

M1 8x-16x-32x-64x-128x 

M2 16x-32x-64x-128x-256x 

M3 64x-128x-256x-512x-1024x 

 

The other parameters and the training and validation 

losses are shown in table 4. Dropout with a probability of 

50% was used as the regularization technique to counter 

over-fitting. An epoch corresponds to the number of 

passes completed over the entire training set. Dice loss 

was used to compute the training and validation losses. 

Dice loss measures the relative overlap between the 

prediction and the ground truth. The best results on the 

test set were obtained on the heat and general nutrient test 

set. Table 5 shows the metrics of the results on the test 

set. The Jaccard index is a similarity coefficient to gauge 

the similarity and diversity of sample sets. F1score, recall, 

and precision take into consideration false positive and 

false negatives predicted by the algorithm. Lastly, pixel 

accuracy is the percentage of pixels the algorithm 

classified correctly. 

 

Table 4: Parameters of the best performing model 

Learning 

rate 

Epochs Dropout Train 

loss 

Validation 

loss 

1e-4 20 50% 0.6298 0.6179 

 

Table 5: Metrics on the best performing test set 

Jaccard 

Index 

F1 score Recall Precision Pixel 

accuracy 

0.4235 0.5914 0.5922 0.5983 0.7997 

 

Figure 6 (left) shows the prediction on an image from the 

heat and general nutrient test set, and the ground truth is 

shown on the right. We can see that in the prediction, the 

algorithm predicts a part of the growth tray as the plant. 

This is because the ImageJ annotation tool used splines 

to enclose and annotate the region of interest. In many 

images, there were parts of the plant canopy that had gaps 

through which the water tray or the growth chamber 

walls were visible. Unfortunately, the tool did not have 

the resources to keep these parts out of the annotation 

(see figure 7). This hints towards the fact that the 

annotation tool was not appropriate for our problem. 

Unfortunately, due to the fact that the segmentation was 

recognizing parts of the growth chamber walls and the 

growth tray as a part of the plant, the analysis of the hue 

values of the segmented regions were erroneous. 

However, this problem can be tackled by focusing on the 

development of a more appropriate annotation tool. Once 

a proper segmentation is achieved, the hue values of the 

plant canopies need to be computed, after which we can 

plot how the hue varies chronologically. This is because 

variation of hue has been linked to nutrition deficiencies 

[4]. 

 

A remarkable thing to be noted is the time efficiency of 

the U-Net. It took only 1.0812s to compute the 

predictions on 7 images on the CPU. This indicates a path 

towards plant phenotyping on smartphones or low-

powered devices. In the future, transfer learning or 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Drawback of ImageJ 

 

Fig. 6.  Prediction (left), Ground truth (right) 
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knowledge distillation can be used to improve accuracy. 

Additionally, GANs (generative adversarial networks) 

can be used to generate more data points instead of 

relying on image augmentation alone. 
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