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Abstract 

Hepatitis B virus (HBV) infection is one of the life-threatening diseases due to causing cirrhosis and liver cancer in 

the infected person. Setting the policy to control the HBV epidemic is an important issue that can be achieved by 

using feedback controller design procedure through the compartment model. In this article, the sliding mode 

controller with a time-varying sliding surface was utilized to set the multiple measures control policy for controlling 

the HBV epidemic. The stability of the control HBV epidemic system was examined. The simulation of the control 

system was conducted to confirm the feasibility of applying the time-varying sliding mode controller for setting the 

HBV control policy. The simulation results showed that the designed control policy could drive the target 

subpopulation to the desired levels. The convergence rate of the control HBV system could be improved. Thus, the 

time-varying sliding mode controller is a feasible approach to set the measures for controlling the HBV epidemic. 

Keywords: Hepatitis B, Epidemic system, Compartment model, Time-varying sliding mode control. 

1. Introduction

Hepatitis B is a viral infection causing high morbidity 

and mortality rate from both chronic and acute liver 

infection1-3. This virus is hepatotropic DNA virus in the 

family of Hepadnaviridae1, 3, 4. The spread of hepatitis B 

is caused by both vertical (perinatal) and horizontal 

transmission routes through infected body fluids. After 
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being exposed to the HBV, the disease can develop either 

acute or chronic hepatitis B2,7,8. Acute hepatitis B patients 

typically have the symptoms such as fever, fatigue, dark 

urine, and jaundice. Chronic infection refers to the long-

term inflammation leading to liver damage. This damage 

causes cirrhosis and liver cancer which are deadly 

diseases3, 6. According to WHO2, in 2019 almost three 

million people were chronic hepatitis B, and more than 

800,000 people were dead. A feasible treatment for acute 

HBV patients is required to provide the comfort and to 

balance nutrient and fluids of the patients2,6. For the 

chronic HBV patients, the purpose of treatment is to 

reduce the viral load to prevent cirrhosis and liver cancer. 

This can be achieved by using the immunomodulatory 

and antiviral drugs2,3,8. The vaccine is an important 

preventive measure of the hepatitis B in susceptible 

individuals since it can provide high effective protection 

and safe2,5. For epidemic control, other measures such as 

treatment for HBV patients, screening and diagnosis of 

high-risk population can also be included in the control 

policy isolation3,9,10. 

Many mathematical models representing the dynamic 

of HBV epidemic have been developed based on 

different compartment models10-17. With these 

compartment models, control policies including 

measures such as vaccination, and treatment and isolation 

controls can be drawn by using dynamic optimization 

approach according to Pontryagin’s maximum 

principle10-17. Another potential approach is to use 

feedback control approach to set the policy18-30. Feedback 

control could deal with the uncertainties and disturbances 

which occur in the system. Moreover, it is an efficient 

approach to set the policy in an analytical form31. 

Applying feedback control to define the measures of the 

control policy showed the feasibility and the efficiency in 

the previous studies of this approach18-30. Sliding mode 

control (SMC) is a robust feedback control which has 

been employed to control various nonlinear dynamical 

systems32-34. Moreover, the SMC method has been 

applied to synthesize the control policy for the biological 

systems such as ecosystems and epidemic models18,24,27-

30, 35-36. For the epidemic systems, the sliding mode 

control was applied to set the control policy of the 

epidemic systems in the form of a compartment 

model18,24,27-30. The SMC with an integral sliding surface 

can eliminate the steady state errors of the control 

systems as applied to control various engineering 

systems37,40,41. Specifically, this SMC has been used for 

controlling epidemic systems18, 27. Ibeas et al. 18,27 used 

the integral sliding mode control to set the vaccination 

control policy with robustness for handling the 

uncertainties of the model parameters. The improvement 

in terms of the convergence rate of the sliding mode 

control systems can be achieved by using the time-

varying sliding mode control (TVSMC) where the 

constant sliding surface is replaced by the time-varying 

sliding surface. As shown in Refs. 37-40, 42-44, the time 

varying sliding surface is defined such that the initial 

condition is located on or crossed by the sliding surface. 

The development and applications of the TVSMC 

method can be found in the literature37-40, 42-44.  

Even though the feasibility of applying feedback 

control for controlling the HBV system was presented in 

Ref. 21, the robustness of the control policy was not 

presented. As integral sliding mode control can provide 

the robustness and the concept of time-varying sliding 

surface can improve the convergence rate of a control 

system, this study focuses on studying of applying time-

varying sliding mode control (TVSMC) with the integral 

sliding surface to set the HBV control policy with 

multiple measures based on the compartment model. To 

the best of authors’ knowledge, setting the HBV control 

policy with multiple measures using the time-varying 

sliding mode controller design procedure has not been 

presented.   

The rest of this paper consists of four following 

sections. The mathematical model of the HBV system is 

presented in Section 2. Section 3 provides the details of 

the time varying sliding mode controller design for 

setting the control policy. The simulation of the control 

system including a simulation example and simulation 

results is presented in Section 4. The conclusion is stated 

in Section 5.   

2. Model of HBV Epidemic System 

The mathematical model presented by Ullah et al. 17 was 

used for setting the control policy based on the time- 

varying sliding mode controller design procedure. This 

model consists of six subpopulations which are 

susceptible ( S ), exposed ( E ), acute infected ( A ), 

carrier ( C ), hospitalized ( H ), and recovered ( R ) 

individuals. The mathematical model from Ref. 17 is 

presented in (1): 
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  (1) 

The parameters of this HBV system are presented as 

follows 
17

: the rate b  and the rate d  represent the birth 

and natural death rates of the population in the HBV 

system, respectively. The rate 
1h  and the rate

2h  refer to 

the rates of acute and carrier individuals who were 

hospitalized, respectively. The coefficient   is the 

transmission coefficient. The parameter   defines the 

flow rate of changing from the exposed subpopulation to 

the carrier subpopulation. The mortality rate caused by 

acute infection is denoted by 
Ad . The carrier individual 

death rate is defined by 
Cd . The rate   defines the rate 

of changing from the acute subpopulation to the carrier 

subpopulation. The recovery rate is defined by  . The 

rate of the unimmunized children who were born to the 

carrier mothers is denoted by  . The parameter   is 

the carriers’ infectiousness caused by acute infection. 

The first control measure, 1( )u t , is the isolation measure 

for preventing transmission between infected and 

uninfected individuals. The second measure, 2 ( )u t , 

refers the human intervention which consists of public 

education and awareness of sending the infected persons 

to the hospital. The third measure, 3( )u t , represents the 

treatment for the hospitalized individuals. All of these 

measures are constrained as 1 2 30 , , 1u u u  17. The total 

population of the HBV epidemic system is defined by 

( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t A t C t H t R t= + + + + + .  

After defining subpopulations of the HBV system in (1) 

as 1S x= , 2E x= 3A x= , 4C x= , 5H x= , and 6R x= , 

the input-output model of the system in (1) can then be 

expressed as (2):  

 ( ) ( )x f x g x u= + , (2) 
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3. Controller Design 

3.1.  Time-varying Sliding Mode Controller Design 

Based on the control objective in Ref. 17, the control 

objective of TVSMC controller design procedure is 

defined to manipulate the exposed, acute, hospitalized 

subpopulations to the desired values. The error 

corresponding to the control objective is defined as (3): 

 2 2 2 3 3 3 5 5 5{ ,r r re x x e x x e x x= − = − = − . (3) 

where 2rx , 3rx , and 5rx  are the desired values and set as 

2 3 5 0r r rx x x= = = 17.  

Based on Refs. 32-34, 37, 39-41, and 45, the design 

procedure of synergetic control is presented as follows.  

It is referred to Refs. 37, 39, and 40, the time-varying 

integral sliding surface are defined as  
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, (4) 

where 2/

2 2
ct n

cm e −
= , 3/

3 3
ct n

cm e −
= , and 5/

5 5
ct n

cm e −
= . 

The controller parameters 2 3 5 2 3 5, , , ,I I I c c ck k k n n n  are 

 real positive numbers. The coefficients, 2cm , 3cm , and 

5cm  are defined based on the sliding surfaces at the initial 

time, 2 3 5(0) (0) (0) 0s s s= = = . This yields that 

2 2 (0)cm e= − , 3 3(0)cm e= − , and 5 5(0)cm e= − 37, 39, 40. 
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The classical constant plus proportional reaching law45 or 

exponential reaching law34 was utilized in this study as 

(5): 

 

2 2 2 2 2 2

3 3 3 3 3 3

5 5 5 5 5 5

( )

( )

( )

sw p

sw p

sw p

s k sign s k s
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= − −


= − − 


= − − 

. (5) 

Substituting sliding surfaces (4) into the set of reaching 

laws (5) yields 
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From the HBV dynamic system, (6) can be obtained as 
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The control measures can be obtained as (8): 

 

1
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where 
2 2 2 2 2 2( ) r If x x k e = − + + ,

3 3 3 3 3 3( ) r If x x k e = − + + ,  

and
5 5 5 5 5 5( ) r If x x k e = − + + . 

3.2.  Proof of Stability 

According to Liu and Wang34, the stability of the control 

HBV system can be investigated based on the Lyapunov 

stability. The Lyapunov function of the control HBV 

system is defined as (9):   

 2 2 2

2 3 50.5 0.5 0.5V s s s= + + . (9) 

The derivative of the Lyapunov function is obtained as  

(10): 
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Assuming that there are external bounded disturbances in 

the 2x , 3x , and 5x  of (2), V  in (10) is obtained as (11): 
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where 
2 2( )d t D , 

3 3( )d t D , and 
5 5( )d t D  for 

2 3 5, , 0D D D    

Substituting (8) into (11) yields 
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If 2swk , 3swk , and 5swk are chosen as 2 2 2swk D = + ,  

3 3 3swk D = + , and 5 5 5swk D = + , where 2 , 3 ,

5 0  , it can be obtained that  

 2 3 5

2 2 2

2 3 5

2 2 3 3 5 5 0.

p p pV k s k s k s

s s s  

 − − −

− − − 
 

   (13) 

The inequality (13) implies that control measures 1( )u t , 

2 ( )u t , and 3( )u t , can stabilize the control HBV system 

under the bounded disturbances. Based on (4), at 

2 3 5 0s s s= = = , the error 2e , 3e , and 5e , approach to 

zero as time increases. Thus, the target subpopulations of  

the control system can track the reference signals37,38. 

4. Simulation 

The control measures synthesized in (8) were applied to 

the simulation example of the HBV system in Section 4.1. 

The simulation results are presented in Section 4.2.  
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4.1. Simulation Example 

The HBV epidemic system in (2) with system parameters 

from Ref. 17 was used as a simulation example to show 

the feasibility of applying TVSMC controller design 

procedure to set the HBV epidemic control policy. The 

parameters of the system and the initial conditions 

presented in Ref. 17 are as follows: 0.5b = , 0.008d = , 

1 0.2h = , 0.5 =  ( 0 1  ), 6 = , 0.5 =   

( 0 1  ), 0.5 =  ( 0 1  ), 0.005Cd = , 

0.005Ad = , 6 = , 0.1 = , and 0.2 = . The initial 

condition was assumed based on information provided in 

Ref. 17 and denoted as (0) [180,40,18,10,20,0]Tx = . The 

incremental time step is 0.01 year. The initial time and 

final time were t=0 day and t=10 years respectively17. 

The Runge-Kutta method was used for numerical 

integration. 

The robustness of the control policy was 

demonstrated by adding the bounded disturbance into the 

rate of change of the hospitalized subpopulation as (14): 

 
3( ) [0 ( ) 0]Td t d t= , (14) 

where 
3( )d t  is defined as (15): 

 3

0, 2

( ) sin( ) , 2 4

0, 4

m d d

t

d t d t t

t

 




= +  
 

, (15)  

where 0.5md = , 20d = , and 2.5d = .  

The controller parameters for this simulation example 

are set as follows: 2 0.01Ik = , 3 0.01Ik = , 5 0.01Ik = . 

2 2pk = , 
3 2pk = , 

5 2pk = , 2 4swk = , 3 4swk = , 5 4swk =

2 3 5 0.2c c cn n n= = = .  

In order to show the capability of the TVSMC policy 

in terms of convergence, the simulation results of the 

designed control policy were compared with those of the 

SMC policy using the sliding surface in (4) with 

2 3 5 0  = = = . 

4.2. Simulation Results 

The time responses of interested subpopulations which 

are the exposed, acute, hospitalized under TVSMC and 

SMC policies are shown in Fig. 1. The control measures 

of both TVSMC and SMC polices are presented in Fig. 2. 

The exposed, acute, and hospitalized subpopulations of 

the TVSMC policy converge to the zero faster than those 

the SMC policy as shown in Fig. 1. The isolation 

measures of both TVSMC and SMC start from certain 

levels slightly below their maximum levels. Then, they 

increase rapidly to their maximum levels and stay on 

these levels for rest of time as shown Fig 2. In Fig. 2, the 

human intervention and the treatment measure of both 

policies are at the maximum level from the beginning 

until the end of time. It is clear that the policy synthesized 

by TVSMC design procedure can suppress the HBV 

epidemic. Also, improvement of the convergence rate of 

the control system can be achieved. 

 

Fig. 1. Time response of interested subpopulations including 

exposed ( 2x ), acute ( 3x ), and hospitalized ( 5x ) 

subpopulations. 

 

Fig. 2. Control measures including isolation ( 1u ), human 

intervention ( 2u ), and treatment for hospitalized individuals  
( 3u ). 
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5. Conclusion 

In this study, the time-varying sliding mode control was 

applied to set the HBV control policy with multiple 

measures. The HBV system can be stabilized by the 

synthesized control policy under the bounded 

disturbances. Thus, the epidemic of HBV was eradicated. 

The simulation results confirmed that the subpopulations 

according to the control objective were driven to the 

desired levels. According to the simulation results, the 

improvement of the convergence rate of the HBV control 

system could be achieved by using the time-varying 

sliding mode control policy. Therefore, it is appropriate 

to utilize the time-varying sliding mode controller design 

procedure for setting the HBV control policy. 
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