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Abstract 

This paper considers modeling of the motion of experts in sports to demonstrate their motion to beginners, 
studying the dynamics of a transient response from one position to another, such as a crouching start of a 
short-distance race. A modeling algorithm is developed to remove personal habits of experts from their 
motion and to present simple models to learners according to their learning stages. It is applied to fingers 
motion captured by the Leap Motion Controller.  
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1. Introduction

Motion of players in sports has been measured by sensors. 

For example, it has been reported that motion sensors 

were used for capturing the movements of the golf swing1 

and that pressure sensor systems were presented for 

monitoring the ankle supination torque during sport 

motions2. A wearable inertial sensor network and its 

associated activity recognition algorithm were presented 

for accurately recognizing human daily and sport 

activities3. Motion capture also has been used for 

analyzing sports performance; see a systematic review of 

the recent developments of motion capture systems for 

the analysis of sport performance4. Moreover, a system 

that is applicable to marker-less sports movement 

analysis has been presented5. 

Demonstrating models to learners has proven to be 

particularly effective in enhancing motor learning6. 

Presenting a model of an expert to beginners is therefor 

expected to be effective in learning the motion. However, 

in sports, advanced techniques and skills are too complex 

for beginners, as well as individual habits. We hence 

believe that a simple model that removes these factors 

would make it easier for beginners to learn the motion. 

We therefore introduce a step-by-step simplification of 

the behavior of an expert in this research.  

In this study, we make mathematical models to give a 

simplified model for beginners and a complicated model 

for advanced learners. To this end, we introduce state-

space representation driven by a step input, often used for 

dealing with dynamics in control engineering7. We use 

state-space representations, because it can deal with 

dynamics of multiple input and multiple output, and we 

can obtain a simplified model by reducing the order of 

the state-space representation. We can model a transient 

response from one position to another by means of a step 

input, e.g. a crouching start of a short-distance race. We 

will model a single grasping motion of a hand as a simple 

example of motion that moves from one position to 

another, because motions of finger joints are related to 
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each other and are suitable for studying modeling a 

transient response of sports movements. 

As a motion capture device, we use the Leap Motion 

Controller (LMC), an optical hand tracking module that 

captures the movements of hands8. Accuracy and 

robustness of the LMC has been analyzed9, and the 

performance of the LMC was evaluated with the aid of a 

professional, high-precision, fast motion tracking 

system10.  

2. Measuring data 

We describe how to measure the finger motion. Figs.1 

and 2 show the start (the open hand) and the end (the 

grasped hand) of transient motion, respectively. The 

LMC can measure 21 finger joints in a three-dimensional 

cartesian coordinate system, meaning that the LMC 

obtains 63 elements at a sampling time. Figs. 3 and 4 

show the measuring points and the coordinate system, 

respectively. We define the output 𝑦(𝑡) as a vector with 

63 rows as 

𝑦(𝑡) = [𝑝𝑥(𝑡)⊤ 𝑝𝑦(𝑡)⊤ 𝑝𝑧(𝑡)⊤]
⊤

, 

where 𝑝𝑥(𝑡), 𝑝𝑦(𝑡), 𝑝𝑧(𝑡) ∈ 𝑅21 are positions in the X-

Y-Z, coordinate of 21 joints of fingers. The positions of 

finger joints are measured at the equal sampling time 

between the time interval from the open hand to the 

grasped hand. The time interval is around 1 second, and 

100 data is sampled in 1 second. We use Processing for 

measuring the grasping motion11,12. 

 

 

 

 

 

Fig.1. start of measurement   Fig.2. end of measurement 

 

 

 

 

 

 

 

 

Fig.3. measuring points         Fig.4. coordinate system 

3. Problem setting 

Suppose that the sampling time is ℎ  and let 𝑦𝑘  be the 

coordinate 𝑦(𝑡) at 𝑡 = 𝑘ℎ: 

𝑦𝑘 = 𝑦(𝑘ℎ). (1) 

We model 𝑦𝑘  by means of the distance-time state-space 

representation: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , (2𝑎) 

𝑦𝑘 = 𝐶𝑥𝑘 + ζ, (2b) 

where 𝑥𝑘 is a state of the system, 𝑥0 = 0, ζ is a constant 

vector, and 𝑢𝑘 is as follows: 

𝑢𝑘 = {
  0 (𝑘 = −1, −2,  … )

1 (𝑘 = 0,  1,  2,  … )
(3) 

We suppose that 𝑘 = 0 when the transient motion starts 

and consider the following problems. 

Problem 1: Find (𝐴 , 𝐵 , 𝐶 , ζ)  within the degrees of 

freedom of similarity transformations, given 𝑦𝑘  in (2) 

and (3). 

Problem 2: Suppose that the positions of joints fingers 

are measured as in (1). Find a mathematical model for 𝑦𝑘  

in (2) and (3).  

The complexity of the model of the finger motion in (2) 

is determined by the size of the matrix 𝐴 or the order of 

the system. The lower the order, the simpler the model is. 

The higher the order, the more accurately the finger 

motion can be modeled, and the closer motion is 

generated to the original one. 

By choosing the order of the model (2), we can generate 

samples of the motion of the experts for different level of 

learners. It is expected that beginners will be able to learn 

simple motions generated by simpler dynamical models, 

whereas advanced learners will be able to learn more 

complex motions. It should be noted that the dynamical 

system (2) can model the transition from one point to 

another, though we model finger motion in this study. 

4. Solution via deterministic realization 

We solve Problem 1 by using the deterministic 

realization algorithm13 and apply the algorithm to 

Problem 2. The deterministic realization algorithm is 

suitable for the purpose of this study, because the order 

of the model can be systematically determined by the 

singular value decomposition (SVD)7. Since the 

deterministic realization algorithm was developed for 

obtaining a state-space model of an impulse response, we 

modify the algorithm to obtain a state-space model of the 

finger motion. 

We consider Problem 1. Let us describe 𝑦𝑘 for (2) as 
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𝑦𝑘 = ∑ 𝐶𝐴𝑗−1

𝑘

𝑗=1

𝐵 + ζ, (4) 

and let 𝑣𝑘 be as follows (𝑘 ≥ 1): 

𝑣𝑘 = 𝑦𝑘 − 𝑦𝑘−1. (5) 

The signal 𝑣𝑘 is the difference of the output 𝑦𝑘 . From (4), 

𝑣𝑘 satisfies the following equation: 

𝑣𝑘 = 𝐶𝐴𝑘−1𝐵. (6) 

For positive integers 𝜏 > 𝑛  and 𝑁 >  𝑛 , define the 

Hankel matrix 𝐻 ∈ 𝑅𝜏𝑝×𝑁 from 𝑣𝑘 as follows: 

𝐻 = [

𝑣1 𝑣2 ⋯ 𝑣𝑁+1−𝜏

𝑣2 𝑣3 ⋯ 𝑣𝑁+2−𝜏

⋮ ⋮ ⋮ ⋮
𝑣𝜏 𝑣𝜏+1 ⋯ 𝑣𝑁

] . (7) 

We also define the extended observability and 

reachability matrices as follows: 

𝒪𝜏 = [𝐶⊤ (𝐶𝐴)⊤ ⋯ (𝐶𝐴𝜏−1)⊤]⊤, (8𝑎)

𝒞𝒩 = [𝐵 𝐴𝐵 ⋯ 𝐴𝑁−1𝐵]. (8𝑏)
 

From (6), 𝐻 satisfies the following equation: 

𝐻 = 𝒪𝜏𝒞𝒩 . (9) 

Let us compute the SVD of 𝐻: 

𝐻 = 𝑈𝛴𝑉⊤ ≈ [𝑈1 𝑈2] [
𝛴1 0
0 0

] [
𝑉1

⊤

𝑉2
⊤]

= 𝑈1𝛴1𝑉1
⊤,    (10)

 

where 𝛴  is a diagonal matrix, and 𝑈  and 𝑉  are 

orthogonal matrices satisfying 𝑈⊤𝑈 = 𝐼  and 𝑉⊤𝑉 = 𝐼 . 

From (9), 𝒪𝜏and 𝒞𝒩 are expressed as 

𝒪𝜏 = 𝑈1𝛴1

1
2, 𝒞𝒩 = 𝛴1

1
2𝑉1

⊤. (11) 

From (8), 𝐶 and 𝐵 can be obtained as follows: 

𝐶 = 𝒪𝜏(1: 𝑝, : ),   𝐵 = 𝒞𝒩(: ,1), (12) 

where we use the colon notation14. Let us define  𝒪𝜏
↓ and 

𝒪𝜏
↑ as follows: 

𝒪𝜏
↓ = 𝒪𝜏(1: 𝑝(𝜏 − 1), : ), (13𝑎) 

𝒪𝜏
↑ = 𝒪𝜏(𝜏 + 1: 𝑝𝜏, : ).     (13𝑏) 

From (8a), we have 

𝒪𝜏
↓ = [𝐶⊤ (𝐶𝐴⊤) ⋯ (𝐶𝐴𝜏−2)⊤]⊤, (14𝑎) 

𝒪𝜏
↑ = [(𝐶𝐴)⊤ (𝐶𝐴2)⊤ ⋯ (𝐶𝐴𝜏−1)⊤]⊤, (14𝑏) 

and hence  

𝒪𝜏
↓𝐴 = 𝒪𝜏

↑. (15)

We can thus obtain 𝐴  by solving the least-squares 

method. Let the estimates of 𝐴, 𝐵, 𝐶 and ζ be denoted as 

𝐴̂, 𝐵̂, 𝐶̂, and ζ̂, respectively. By setting the initial state as 

𝑥̂0 = 0, we compute 𝜂𝑘 for 𝑘 = 0, ⋯ , 𝑁 as follows: 

𝑥̂𝑘+1 = 𝐴̂𝑥̂𝑘 + 𝐵̂𝑢𝑘 , (16𝑎) 

𝜂𝑘 = 𝐶̂𝑥̂𝑘 ,        (16𝑏) 

where 𝑢𝑘  is the step input in (3). We then have 𝜂𝑘 =

∑ 𝐶̂𝐴̂𝑗−1𝐵̂𝑘−1
𝑗=1  and obtain the following equations from 

(16):  

ζ = 𝑦𝑘 − 𝐶𝑥𝑘 

                                          = 𝑦𝑘 − ∑ 𝐶𝐴𝑗−1𝐵𝑘
𝑗=1 . 

We compute an estimate of ζ, by averaging 𝑦𝑘 − 𝜂𝑘: 

ζ̂ =
1

𝑁 + 1
∑(𝑦𝑘 − 𝜂𝑘)

𝑁

𝑘=0

. (17) 

Thus, estimates of (𝐴, 𝐵, 𝐶, ζ) for Problem 1 are obtained 

as (𝐴̂, 𝐵̂, 𝐶̂, ζ̂), and those of 𝑦̂𝑘 in (2) are given by 

𝑥̂𝑘+1 = 𝐴̂𝑥̂𝑘 + 𝐵̂𝑢𝑘 , (18𝑎) 

𝑦̂𝑘 = 𝐶̂𝑥̂𝑘 + 𝜁. (18𝑏) 

We summarize the above procedure for Problem 1 as the 

following algorithm: 

Step 1: Calculate 𝑣𝑘 in (5). 

Step 2: Construct the block Hankel matrix 𝐻 in (7). 

Step 3: Compute the SVD in (10). 

Step 4: Determine 𝒪𝜏 and 𝒞𝒩 as in (11). 

Step 5: Compute the estimate (𝐴̂, 𝐵̂, 𝐶̂) of (𝐴, 𝐵, 𝐶) from 

(12) and (15). 

Step 6: Obtain an estimate ζ̂ of ζ as (17) and calculate 𝑦̂𝑘 

in (18). 

By applying this algorithm to Problem 2, we have 

mathematical models for motions of fingers. The model 

is simplified by the SVD of the Hankel matrix in (10), 

and the order is determined by the number of the 

dominant singular values. We hence select the order by 

choosing the number of the non-zero diagonal elements 

of 𝐻 . We thus simplify the state-space model (3) and 

obtain simplified transient motion from the open hand to 

the grasped hand. The lower the order of state-space 

model is, the simpler the transient motion becomes.   

5. Experimental results 

This section discusses obtained models. We use the first 

0.7 seconds of the transition from the open hand to the 

grasped hand, focusing on the dynamics of the start of the 

motion and removing the data for the end of 0.3 seconds. 

The sampling time is ℎ = 0.01(s). In Figs. 5-8, we show 

𝑝𝑦(𝑡) at the measuring point 13, which is a tip of the 

middle finger and has one of the largest motions among 

the measuring points of fingers. The horizontal and 

vertical axes express the time (s) and the positions (mm) 

of 𝑝𝑦(𝑡), respectively. Red lines in Figs. 5-8 indicate the 

position of the original motion, whereas blue ones in Figs. 

5-8 show models at the order of 4, 7, 12, and 18, 
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respectively. Figs. 5-8 demonstrate that the output of 

models (blue lines) become closer to the original motion 

(red lines) as the order is higher; compare blue lines in 

Figs. 5 and 8 and notice that the motion drawn by blue 

line in Fig 5 is much simpler than that in Fig 8. We can 

thus demonstrate fingers motions with different simplifi-

cations.  

 

 

 

 

 

 

 

Fig.5. model (𝑛 = 4)              Fig.6. model (𝑛 = 7)  

 

 

 

 

 

 

 

Fig.7. model (𝑛 = 12)            Fig.8. model (𝑛 = 18) 

6. Conclusions 

In this study, we have made mathematical models of 

fingers motions with the aim of simplifying the motion 

of experts in sports. We solved the problem of modeling 

fingers motions based on a step response of a state-space 

representation, by modifying the deterministic reali-

zation algorithm. The experimental results showed that 

the modeling method satisfied the purpose of simplifying 

complex fingers motions reducing the order of the state-

space representation. By choosing the order, we could 

select the model of finger motion from simple one to 

more accurate one that is close to the original motion.   
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