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Abstract 

PID control is widely used in process systems represented by chemical processes and petroleum refining 
processes. The reason is that PID control has a simple structure. However, most of the existing systems 
are non-linear systems, and it is difficult to always obtain good control results with fixed PID control. 
Therefore, in this study, we propose a method of tuning the PID gain according to the deviation (control 
error) of the control result, and verify the effectiveness of this method through experiments. For self-
tuning PID control using a local linear model, we propose a program that performs PID tuning only when 
the deviation occurs with a certain magnitude. A simulation is performed on the Hammerstein model, 
which is a non-linear system. As a result of the experiment, the number of PID gain changes could be 
significantly reduced. 

Keywords: Local Linear Models, PID controller, Control error. 

1. Introduction

PID control [1,2] is widely used in industry, especially in 

process systems such as chemical processes and oil 

refining processes. PID control is widely used in industry, 

especially in process systems such as chemical and oil 

refining processes. However, the characteristics of many 

real systems vary according to environmental and 

operating conditions, and they include nonlinear systems. 

Therefore, it is difficult to obtain good control results 

with fixed PID control. For this reason, methods using 

machine learning and data-driven control [3,4] have been 

proposed as effective control methods for nonlinear 

systems. However, since these methods perform PID 

tuning at each step, the computational processing load is 

large, and only high-precision computers can handle 

them. 

In this paper, we propose a method to tune the PID gain 

only when the control result does not follow the target 

value. In this method, a threshold value is set for the 

deviation, and PID control is performed only when the 

threshold value is exceeded. If the deviation is smaller 

than the threshold, the PID gain is not changed. 

Simulation is performed on a bilinear model, which is a 

nonlinear system, to verify the effectiveness of this 

method in reducing the computational load and focusing 

on the control results. A method of tuning the PID gain 

according to the deviation of the control results (control 

error) is proposed, and the effectiveness of this method is 

verified through numerical examples. 
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2. A design of a self-tuning control system using 

a local linear model that performs PID tuning 

according to deviation 

The block diagram of the proposed control system is 

shown in Fig. 1. The authors have previously proposed a 

method for calculating control parameters using the idea 

of the local linear model method [5]. This method can be 

used to control a nonlinear system by creating a locally 

linear model. In the proposed control method, the 

deviation is evaluated for a self-tuning control system 

using a local linear model.  

2.1. Ssystem description 

First, consider the discrete-time nonlinear system 

represented by 

y(t) = f(φ(t − 1))                                                (1) 

where, y(t) represents the system output and f(∙) 

represents the nonlinear function. Also, φ(t-1) represents 

the state of the system before time t-1 (historical data) 

and is called the information vector. The information 

vector φ(t-1) is defined by the following equation. 

φ(t − 1) ≔ [y(t − 1), y(t − 2), ⋯ , y(t − 𝑛𝑦)  

u(t − 1), u(𝑡 − 2), ⋯ , u(t − 𝑛𝑢) ]  (2) 

Furthermore, u(t) is the control input, and 𝑛𝑦 and 𝑛𝑢 are 

the orders of the output and input, respectively. Now, 

suppose that the nonlinear system represented by 

equation (1) can be locally represented by a linear model 

as follows 

𝐴𝑖(𝑧−1)y(t) = 𝑧−(𝑘𝑚+1)𝐵𝑖(𝑧−1)𝑢(𝑡)  

(i = 1,2, ⋯ , N)                      (3) 

where, in Eq. (3), km represents the minimum estimate 

of the lag time, and when the lag time is known, km is set 

to that value; when the range of the lag time is unknown, 

k𝑚 is set to 0. Furthermore, 𝑧−1 represents a time-delay 

operator, meaning 𝑧−1𝑦(𝑡) = 𝑦(𝑡 − 1) . Also, A(𝑧−1) 

and B(𝑧−1) are given by 

A𝑖(𝑧−1) = 1 + 𝑎𝑖,1𝑧−1 + ⋯ + 𝑎𝑖,𝑛𝑦
𝑧−𝑛𝑦                    (4) 

B𝑖(𝑧−1) = 𝑏0 + 𝑏𝑖,1𝑧−1 + ⋯ + 𝑏𝑖,𝑛𝑢
𝑧−𝑛𝑢                    (5) 

After the above preparation, the controller is designed for 

the local linear model. 

 

2.2. Controller Design 

Design the controller based on the following steps. 

[STEP1] Construction of multiple linear models 

For the nonlinear model, multiple linear models are 

constructed, system identification is performed using the 

lumped least squares method, and the parameters of 

𝐴𝑖(𝑧 − 1) and 𝐵𝑖(𝑧 − 1) (i = 1, 2, - - - , N; where i takes 

these values unless otherwise noted) included in the 

linear model of Eq. (3) are estimated. ) parameters in the 

linear model. 

[STEP2] Design of control system 

For the linear model represented by Eq. (3), consider the 

feedback control law given by Eq. 

0)()1()()()()( 11 =−+ −− trRtuzStyzR
  (6) 

where, r(t) represents the target value at step t. R(𝑧−1) 

and S(𝑧−1)are polynomials designed based on the pole 

configuration of the closed-loop system, respectively. 
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R(𝑧−1)  and S(𝑧−1)  are designed based on the pole 

placement method. In this case, the input-output relation 

of the closed-loop system composed of equations (3) and 

(6) is expressed by the following Eq. 
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The denominator polynomial P(𝑧−1) of Eq.(8) is defined 

by the following Eq. 
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)()( 11)1( −−+−
+ zRzBz ii

km      (9) 

It can be seen that P(𝑧−1)  is the characteristic 

polynomial of the closed-loop system. The following 

equation is used to design this polynomial. 

 

Fig. 1.  Block diagram 

(7) 
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σ indicates a parameter corresponding to the rise time, 

and μ  is a parameter related to the damping 

characteristics of the response, which is adjusted by δ. 

Here, R(𝑧−1) and S(𝑧−1)  are calculated based on Eq.(9). 

In order to obtain R(𝑧−1)  and S(𝑧−1)  uniquely, it is 

necessary to set their orders to 𝑛1 = 𝑛𝑦 and 𝑛2 = 𝑛𝑢 +

𝑘𝑚, respectively. In this way, the pole placement control 

system can be designed for each linear model. 

[STEP3] Replacement with PID controller 

We have described a control method based on the pole 

placement method. This method can be replaced by a 

design method based on PID control if it is considered in 

the same way as in Eq.(6). First, consider the PID control 

law of the following Eq. 

)()()()( 2 tyKtyKteKtu DPI

−−−=  (12) 

where, 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷  represent the PID gain, 

respectively. Furthermore, e(t) is the control deviation, 

which is given by the following Eq. 

)()(:)( tytrte −=            (13) 

Now, Eq.(6) is rewritten as follows 
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In this case, from equations (12) and (14), the PID 

parameter is given by 
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The above allows us to adjust the PID parameters based 

on the approximate pole configuration. 

2,1,1: ii ss ++=          (16) 

[STEP4] Calculation of weights 

Next, for each local linear data calculated in [STEP2], the 

estimation error 𝜀𝑖(𝑡) is calculated for each model, and 

the weight ω𝑖  is calculated based on this. 𝜀𝑖(𝑡)  is the 

error between the system output value y(t) and the 

estimated output value ŷ(t) of each linear model. Here, 

ŷ(t) is calculated based on equation (3) by the following 

formula 
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where, A𝑖(𝑧−1) and B𝑖(𝑧−1) are the system parameters 

of each linear model estimated in [STEP1]. 
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In addition, ω𝑖(𝑡)  is the weight corresponding to the 

selected i-th information vector. The smaller the 

difference between the actual outputs value of the system 

and each linear model, the larger the value of this weight. 

Note that the calculation of ω𝑖(𝑡) based on equation (18) 

satisfies the following Eq. 
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[STEP5] Generation of weighted PID parameters 

 Using the weights obtained in [STEP4] and the PID 

parameters in Eq.(15), calculate the weighted PID 

parameters using the following Eq. 
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3. PID tuning method in response to deviation 

In contrast to the local linear model-based competitive 

tuning PID control described in Section 2.2, this section 

describes a method that performs PID tuning only when 

a deviation of a certain magnitude occurs. First, we 

define the threshold as τ, and the condition on τ as follows. 
𝜏 > |𝑒(𝑡)| (23) 

The PID control described in Section 2.2 is performed 

only when this condition is satisfied; otherwise, the 

control is performed without changing the PID gain. Here, 

the parameter τ in equation (23) represents a design 

parameter given by a certain positive constant. The 

setting of this parameter requires some trial and error. 

4. Simulation 

(11) 

(15) 
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In order to verify the effectiveness of this method, a 

numerical example for a nonlinear system is presented. 

The Bilinear model is used as the control target. The 

Bilinear model, which is expressed by the following 

equation, is considered as the control target. 

)1(3.0)2(99.0)1(4.0)( −+−−−= tutytyty  

     )1()1(1.0)2(1.0 −−+−− tutytu  

     )()2()2(05.0 ttuty +−−+

 (24) 

However, ζ(t) is a Gaussian white noise with mean 0 and 

variance 0.012. The target value is given as follows. 

𝑟(𝑡) = {

1.0(0 ≤ 𝑡 < 100)       
−1.0(100 ≤ 𝑡 < 200)  

3(200 ≤ 𝑡 < 300)

6(300 ≤ 𝑡 ≤ 400)

(25) 

Next, based on the static characteristics, a linear model 

corresponding to the control input range is constructed as 

follows. However, the number of divisions is set to N=3. 

The various design parameters included in this method 

are 𝑛𝑦 = 2, 𝑛𝑢 = 1, and 𝑘𝑚 = 0. 
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Furthermore, the threshold τ for determining PID tuning 

is set to 0.1. 

Fig. 2 shows the control results of the proposed method.  

The points shown in Fig. 2 indicate where the PID gain 

is being tuned. The results show that the number of times 

the PID gain is changed in the proposed method is only 

56 step compared to 400 step in the conventional method 

because the conventional method tunes the PID gain 

sequentially, which is a significant reduction of about 1/7 

times compared to the conventional method. 

5. Conclusions 

In this paper, a self-tuning control system using a locally 

linear model that performs PID tuning according to 

deviations for a nonlinear system is discussed. The 

effectiveness of the proposed method was verified by 

simulating a nonlinear bilinear model. In the future, we 

plan to evaluate the control performance of the deviation 

threshold setting using item response theory. 
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