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Abstract 

This paper focuses on the trajectory tracking control algorithm for differential wheeled mobile robots (DWMRs) 
based on rhombic input constraints. The kinematics and dynamics model of DWMRs are Established, and vector 
analysis method is used to design the controller when the linear velocity and angular velocity of DWMRs were not 
independent of each other. Through the trajectory tracking simulation of the 8-shaped curve, a good control 
performance is obtained. 
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1. Introduction 

The tracking control of DWMRs has a very broad 
application background. There are many methods have 
been used in controller design for trajectory tracking. 
Sliding mode control,1 backstepping control,2 robust 
control,3 fuzzy control,4 active disturbance rejection 
control5 etc. are used to solve this problem. From a 
practical perspective, the input constraints must be 
considered when designing controller, however most 

 
*Corresponding author. 

existing studies are assume that the input constraints of 
the robots’ linear velocity v and angular velocityω are 
independent of each other, that is, 1v m≤ , 2mω ≤ , 

where 1m and 2m are positive constants. (Fig.1). A proof 
will be given later, the actual situation is that the input 
field of DWMRs is the rhombic area defined by

/  / 1v m l mω+ ≤ , where m is the maximum velocity of 
the two driving wheels and l is half of the distance 
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between them. If the controller in Ref.6 is applied to a 
differential drive robots, the rectangle estimation needs 
to be extracted in the rhombic input field. The largest 
rectangle estimate that can be calculated is determined by 

/ 2v m≤ and / 2m lω ≤ , it is only half of the rhombic 
input field, which leads to the robots’ mobility cannot be 
fully utilized.  Rhombic input constraints are considered 
first time in Ref.7, it proposed a geometric analysis 
method to design time-varying feedback parameters. 

 
Fig. 1. Rectangular and diamond constraints 

2. Problem Statement 

2.1. Rhombic Input Constraints 

Consider DWMRs shown in Fig.2, the driving wheels’ 
velocities of the robots are lv and rv respectively. 
Assuming that the two driving wheels have the same 
performance, there maximum velocities are both m , that 
is vl m≤ and vr m≤ . Usually v and ω of DWMRs are 
used as control inputs, and their relationship with the 
speed of the driving wheel is 

( ) / 2l rv v v= +   (1) 
( ) / 2r lv v lω = −   (2) 

Thus v andω are constrained by 
( ) / ( ) / , [ ,0)
( ) / ( ) / , [0, ]
m v l m v l v m
m v l m v l v m

ω
ω

− + ≤ ≤ + ∈ −
− − ≤ ≤ − ∈

 (3) 

The above is collated into one expression: 
Equation (3) can be sorted into one expression: 

/ +  / 1v m l mω ≤   (4) 
This constraints is shown in the Fig.1 as a rhombus with 
black solid line. 

2.2. Tracking Control Based on Rhombic Input 
Constraints 

The kinematics and dynamics equations of two-wheel 
differential mobile robots is 

= cos ,   sin ,   x v y vθ θ θ ω= =   (5) 
( , )x y is the center point coordinates of DWMRs and θ  

is used to indicate its azimuth angle (see Fig.2). 

 
Fig. 2. Trajectory tracking of DWMRs 

Assumption 1. The input constraint of DWMRs is (4), 
and its reference trajectory satisfies: 

r = cos ,   sin ,   r r r r r r rx v y vθ θ θ ω= =   (6) 
and  

r / + / 1 /rv m l m l mω ε≤ −   (7) 
Among them, ( , , , , )r r r r rx y vθ ω  is the target values of
( , , , , )x y vθ ω , where ε is a constant satisfies 0 /m lε< < . 

Remark 1. We introduce a constant ε in equation (7) to 
ensure that the reference trajectory can be tracked by 
DWMRs under the input constraints (4) 
Fig.2 shows that system errors of DWMRs are defined 
as: 

  cos  sin   0
sin  cos   0

    0        0      1

e r
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e r
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θ θ
θ θ

θ θ θ
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     −     

 (8) 

The tracking errors system can be obtained by deriving 
the two sides of the above formula (8) 

cos
sin

e r e e

e r e e

e r r
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θ ω
θ ω
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= − +
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Now our goal is to design the controller to make the 
system errors ,e ex y and eθ tend to zero, and the control 
variables v andω must meet the constraints (4). 
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3. Controller Design Based on Rhombic Input 
Constraints 

Before our controller design work begins, we first 
understand two important lemmas 
Lemma 1.8 : [0, )f R∞ → is first-order continuous 
differentiable and

t
lim ( )f t
→∞

is a finite value, if 

( ), [0, )f t t∈ ∞ is uniformly continuous, then
t
lim ( )=0f t
→∞

 . 

Lemma 2.7 There is a scalar function ( ), [0, )x xρ ∈ ∞ , 
which satisfies the following properties: 

1. ( )xρ is a continuous and non-decreasing function; 
2. (0)=0ρ , and 0 ( ) 1xρ< ≤ for (0, )x∈ ∞ ; 
3. 

+ 0
0

lim ( )
x

xρ ρ
→

′ = , which 0ρ is a positive constant. 

Define ( )xψ as 

0

( ) /     (0, )
( )=

            0
x x x

x
x

ρ
ψ

ρ
∈ ∞

 =
  (10) 

Then, for (0, )σ∀ ∈ ∞ , there always existα and β , such 
that ( )xα ϕ β≤ ≤ holds for [0, ]x σ∈ , where bothα and
β are positive constants. 

( ) tanh( )x xρ = is a function that satisfies the above 
conditions. 
There are many results about the design of the tracking 
controller of the differential drive robots in the existing 
literature. In this paper we choose the controller in Ref.9. 

cos
sin

r e x e

e
r y r e e

e

v v k x

k v y kθ

θ
θ

ω ω θ
θ

= +

= + +
 (11) 

where ,x yk k and kθ are positive constants. Through 
formula (11), we can easily see that too large errors will 
cause the control variables v andω to be too large, and 
then the control variables will exceed the constraints. In 
this way, the control commands cannot be executed well. 
Lemma 3.7 For controller (11), if following conditions 
are met: 

1) , ,x x x y y yk k k k k k k k kθ θ θ≤ ≤ ≤ ≤ ≤ ≤  

2) yk is differentiable and 0yk ≥ . 

where , , , , ,x x y yk k k k k kθ θ are positive constant values, 
Then, trajectory tracking errors of DWMRs will 
converge to zero, that is , ,e e ex y θ will converge to zero. 
Controller (11) can be designed by using the vector 
analysis method, define the controller ,v ω as a vector 

v
OD

ω
 

=  
 


 

then by defining other vectors as: 
0

cos
, sin

0
,
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r e
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e

x e
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= =   
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 (12) 

Then we can get the vector representation of the 
controller 
OD OA AB BC CD= + + +
    

  (13) 
In order to make the controller meet the rhombic input 
constraints, we need to analyze each vector in turn. 

cos
+ + 1r e r r rv l v l l

m m m m m
θ ω ω ε

≤ ≤ −  (14) 

 
Fig. 3. Vector method design controller 

Equation (14) shows that OA


satisfy the rhombic input 
constraints, without loss of generality, we represent OA


 

as shown in Fig.3, and because the length of AB


is 
proportional to yk , we can definitely find a yk to make 

AB


within the rhombic input constraints. Similarly, we 
can also find suitable xk and kθ , so BC


and CD


can meet 

the rhombic constraints respectively. Obviously, the 
controller OD


will definitely meet the rhombic input 

constraints. 
Since the requirement for yk is 0yk ≥ , we intuitively 

thought of designing if from Lyapunov function ( )V t  
2
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Let yk be 

22 ( )
yk

m V t
λε

µ
=

+
  (16) 

Where λ and µ are constants, 0 1λ< < and 0µ > . 
According to (15) (16), we can get 

2 2 4 2 2 2 2 2

2 2 2

4 ( )
0

2 ( )
e e e e

y
e e

m m x y
k

m x y
θ θ λ ε µ

µ
− + + + +

= >
+ +

 (17) 

2 2 2

2 2 2 2

2 2
2 ( )

x y e y e
y

y e e e

k k x k k
k

k x y
θ θ
µ θ

+
=

+ + +
   (18) 

If 0xk > and 0kθ > , then according to equations (17) and 

(18), 0yk < can be derived, and further from (15) we can 
get 

22 (0)
y y yk k k

mm V
λε λε

µµ
= ≤ ≤ =

+
 (19) 

In this way, the vector OB


can be expressed as: 
Tsin

( cos , )e
r e r y r e

e

OB OA AB v k v y
θ

θ ω
θ

= + = +
  

 (20) 

Similar to OA


satisfy the rhombic input constraints, we 
can easily verify that OB


satisfies the rhombic input 

constraints through formulas (14), (15) and (16). Since
, 0xk kθ > , so the directions of the vectors BC


and CD



are determined by the signs of ex and eθ , In order to 
expand the input field as much as possible while meeting 
the rhombic input constraints. First, we need to determine 
the triangle area BEF△ where the points of C and D are 
located, as shown in Fig.3, when 0ex < and 0eθ > , we 
take the constraint segment② to determine the reference 
triangle 2 2BE F△ , similarly, when 0ex > and 0eθ > , we 
take the constraint segment① to determine the reference 
triangle 1 1BE F△ , when 0ex < and 0eθ < , we get the 
reference triangle 3 3BE F△ , and when 0ex < and 0eθ < , 
we get the reference triangle 4 4BE F△ . Through the 
equations of the four constraint lines and the coordinates 
of point B , we can easily obtain the coordinates of point
E as: 

sin
: (sgn( )( sgn( )( ) ),

sin
       )

e
e e r y r e

e

e
r y r e

e

E x m k v y l

w k v y

θ
θ ω

θ
θ

θ

− +

+
 (21) 

Similarly, we can get the coordinates of F as: 

sgn( )( sgn( ) cos )
: ( cos , )e e r e

r e
m x v

F v
l

θ θ
θ

−
 (22) 

Where sgn( )⋅ is sign function 
| | /    0

sgn( )
0          0
x x x

x
x
≠

 =
  (23) 

Further we can get the expressions of BE


and BF


as 
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To design xk and kθ , let 
( )
2

( )
2

e

e

x
BC BE

CD BF

ρ

ρ θ

=

=

 

 
  (26) 

Then, we get from (12)(24)(26), that 
( ) sin

( sgn( )( )
2

sgn( ) cos )
( ) sgn( ) cos

( sgn( )
2

sin
( ))

e e
x e r y r e

e

e r e

e e r e
e

e
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k v y

θ

ψ θ
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ψ θ θ
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−

−
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 (27) 

By formula (15)(16)(20)and Lemma2 we can easily get 
(1 )

2
(1 )

2 2

x x x
lk k m k

mk k kθ θ θ

α λ ε β

α λ ε β

−
≤ ≤ ≤ ≤

−
≤ ≤ ≤ ≤

 (28) 

At this point, the ,   x yk k and kθ meet the two conditions in 
Lemma 3, so the system error will converge to zero. And 
because of our vector method design the parameters 
ensure that the parameter control variables v andω meet 
the rhombic input constraints too. 

4. Simulation Results 

In this section, we simulate and verify the effect of the 
controller. The maximum speed of the drive wheels is set 
to 0.4 /m m s= , the wheel spacing is set to 0.16l m= , 

371



 Trajectory Tracking Control of 
 

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 
 

For setting some parameters of the controller, we choose
( ) tanh( ),  0.1,  0.99,  0.01x xρ ε λ µ= = = = . 

Fig.4(a) shows that DWMRs gradually tracks on the 
reference trajectory. The tracking errors , ,e e ex y θ are 
gradually converge to zero as shown in Fig.4(b), also we 
can guarantee the control variables ,v ω satisfy the 
rhombic input constraints through Fig.4(c), and 
sometimes v can basically reach the bounds of rhombic 
input constraints. 

 
(a) Tracking reference trajectory 

 
(b) Tracking errors 

 
(c) Input and constraints 

 
Fig.4. Simulation results. 

 

5. Conclusion 

The trajectory tracking problem of DWMRs with 
rhombic input constraints is solved in this paper, 
compared with the controller based on rectangular input 
constraints. It can better play the robots' mobility and the 
controller not only solves the tracking problem, but also 
solves the stability problem, the simulation shows the 
controller is effective. Future work will focus on the 
controller design with uncertainty based on a more 
complex application environment. 
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