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Abstract 

Previous spherical mobile robots were driven by two rollers with a fixed rotational axis, which restricts the angular 
velocity vector of the sphere to two dimensions. Three-dimensional freedom is expected to improve the rotational 
diversity of the sphere. This study proposes a spherical mobile robot with a variable roller-rotational axis that allows 
three-dimensional freedom of movement. Furthermore, the kinetic energy of transporting the sphere by the rollers 
is minimized by an optimization procedure. 

 Keywords: Angular velocity vector of the sphere, Angle of sphere rotational axis, Total kinetic energy 

1. Introduction

Many types of robot, such as omnidirectional mobile 
robots and sphere-transported robots, are based on 
spherical motions. Therefore, various roller 
arrangements have been proposed for mobile robot 
applications.  

Table 1 shows the usage statuses of single spherical 
robots operated by different mechanisms, and the 
dimensions of the existence spaces of their angular 
velocity vectors. Figure 1 shows the numbers of rollers 
𝑁𝑁𝑤𝑤  arranged per wheel in each mechanism, and their 
contact types.  
    In the ACROBAT-S [1] mechanism with 𝑁𝑁𝑤𝑤 = 2, the 
caster of each sphere is driven by two roller drives (see 
Figure 1 (a)). The wheel chair mechanism [2] has three 

. 

spheres (Figure 1 (b)). The rollers are arranged on the 
equator, generate an angular velocity vector on the 
horizontal plane, and can move in all directions. The 
angular velocity vector of the sphere has two-
dimensional freedom. This situation is theoretically 
considered in [3]. In the ball dribbling mechanism [4], the 
rollers are arranged in the upper hemisphere, where they 
hold the balls by friction (See Figure 1 (c)).  
    Among the three-roller cases (𝑁𝑁𝑤𝑤 = 3), OWMPs [5] 
deployed in highway maintenance move the spheres 
within three constrained rollers (See Figure 1 (d)).The 
rollers are arranged on the equator parallel to the 
horizontal plane, and the sphere can be rotated in all 
directions by generating an angular velocity vector on the 
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plane (note that the existence space of the angular 
velocity vector is two-dimensional).  

A ball balanced robot [6] has three unconstrained 
rollers (omni-rollers) arranged in a regular triangular 
configuration (See Figure 1 (e)). CPU-Ball Bot [7] has 
four unconstrained rollers fixed in a square configuration 
(See Figure 1 (f)). Such three-dimensional freedom of 
Table 1   Existence space of angular velocity vector for   
sphere mobile robot 

Mechanism statuses 
Rotational 
Dimension 

ACROBAT-S[1] Caster 2 

Wheel chair [2] Wheel 2 

Ball dribbling mechanism [4] Sphere 
conveyance 2 

OWMPs [5] Wheel 2 

Ball Balanced robot [6] Wheel 3 

CPU-Ball Bot [7] Wheel 3 

Figure 1   Type of roller arrangement for sphere mobile robot

the angular velocity vector of a sphere will improve the 
motion diversity of the sphere. However, a mechanism 
adapting two constrained rollers is suitable in a spherical 
object conveyance. It is desired to transport with  high 
kinetic energy efficiency. 
   In this study, we optimize the total kinetic energy of 
two rollers. Section 2 calculates the angle of the 
rotational axis of the sphere, and theoretical formula of 
minimizes the sum of the kinetic energies of the two 
rollers. Section 3 presents a simulation of total kinetic 

energy, and Section 4 summarizes the results and suggests 
ideas for future work. 

2. Total kinetic energy

2.1 Angular velocity vector of the sphere 
The center 𝑶𝑶 of a sphere with radius r is fixed as the 

origin of the coordinate system 𝛴𝛴 − 𝑥𝑥𝑥𝑥𝑥𝑥 . The 𝑖𝑖th 
constraint roller (i = 1 or 2) is in point contact with the 
sphere at a position vector 𝑷𝑷𝒊𝒊 and is arranged such that 
the center of mass of the roller 𝑷𝑷𝒊𝒊 and 𝑶𝑶 are on the same 
line. 𝝎𝝎  denotes the angular velocity vector of the 
sphere. 𝜼𝜼𝒊𝒊 denotes the unit vector along the rotational 
axis of constraint roller. sphere direction 𝜑𝜑 (0° ≤ 𝜑𝜑 <
360°) is the angle from 𝑥𝑥-axis.  

Now, given the sphere mobile velocity 𝑽𝑽 (the center 
velocity of sphere)  

𝑽𝑽 = ‖𝑽𝑽‖[cos𝜑𝜑 sin𝜑𝜑 0]𝑇𝑇 (1) 

�́�𝝎  which is perpendicular to 𝑽𝑽  is determined as 
follow.

�́�𝝎  =
‖𝑽𝑽‖
𝑟𝑟

 [−sin𝜑𝜑 cos𝜑𝜑 0]𝑇𝑇 (2) 

And. �́�𝝎  is orthogonal projection of 𝝎𝝎  with respect to 
𝑥𝑥𝑥𝑥 − plane.The angle of sphere rotational axis 𝜌𝜌 
( −90° ≤ 𝜌𝜌 ≤ 90° ) is the angle between  𝝎𝝎  and �́�𝝎 . 
Therefore, 𝝎𝝎 =  �𝜔𝜔𝑥𝑥,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧�

𝑇𝑇
  has one-dimensional of

freedom with parameter 𝜌𝜌 (𝜔𝜔𝑧𝑧 = ‖𝑽𝑽‖ tan𝜌𝜌 /𝑟𝑟). 

𝝎𝝎 =
‖𝑽𝑽‖
𝑟𝑟

[−sin𝜑𝜑 cos𝜑𝜑 tan𝜌𝜌]𝑇𝑇 (3) 

2.2 Kinetic energy of the two rollers 

   Consider two rollers with radius  𝑅𝑅 , moment  𝐼𝐼,  and 
roller’s angular velocity 𝜔𝜔𝑖𝑖  at 𝑷𝑷𝒊𝒊. The summed kinetic 
energy of the rollers is given by  Eqs.(4).  

 𝐸𝐸 =  𝐼𝐼(𝜔𝜔12 + 𝜔𝜔2
2)

(4) 
 =

𝐼𝐼
𝑅𝑅2

(‖𝝎𝝎 × 𝑷𝑷1‖2 + ‖𝝎𝝎 × 𝑷𝑷2‖2)

   Using the angular velocity vector of a sphere, we now 
derive the kinetic energy of Type-I (with both rotational 
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axes fixed on the same plane) and Type-II (with 

variable rotational axes) configurations(indicated in 
Figure 2 (a)(b)). 

(A) Case of Type- I 
As shown in Figure 2 (a),  the end point of 𝝎𝝎𝟏𝟏 can 

be determined as the intersection of 𝑙𝑙  (the line 
perpendicular to the horizontal plane passing through 

end point �́�𝝎) and 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐}. Therefore, The angle 
of sphere rotational axis is determined as 𝜌𝜌 = 𝜌𝜌1. 

𝜌𝜌1 = tan−1 �
(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑥𝑥sin𝜑𝜑 − (𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑦𝑦 cos𝜑𝜑

(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑧𝑧
� 

(5) 
Substituting Eqs.(5) into Eqs.(3), we obtain 𝝎𝝎 = 𝝎𝝎𝟏𝟏 
as Eqs.(6). 

  𝝎𝝎𝟏𝟏 = (6) 

‖𝑽𝑽‖
𝑟𝑟 �−sin𝜑𝜑 , cos𝜑𝜑 ,

(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑥𝑥 sin𝜑𝜑 − (𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑦𝑦cos𝜑𝜑
(𝑷𝑷𝟏𝟏 × 𝑷𝑷𝟐𝟐)𝑧𝑧

�
𝑇𝑇

Substituting Eqs.(6) into Eqs.(4)， we obtain 𝐸𝐸 = 𝐸𝐸1 
as Eqs.(7). 

𝐸𝐸1 =
𝐼𝐼
𝑅𝑅2

(‖𝝎𝝎𝟏𝟏 × 𝑷𝑷1‖2 + ‖𝝎𝝎𝟏𝟏 × 𝑷𝑷2‖2) (7) 

(B) Case of Type-Ⅱ

 As shown in Figure 2 (b), we determine  𝜌𝜌 = 𝜌𝜌1, 𝝎𝝎 =

𝝎𝝎𝟐𝟐 that minimizes the summed kinetic energies of the 
two rollers, and calculate the minimum energy (𝐸𝐸 = 𝐸𝐸2). 

To this end, we first express 𝝎𝝎 as the sum of �́�𝝎 and 
𝜔𝜔𝑧𝑧𝒆𝒆𝟑𝟑.  

𝝎𝝎 = �́�𝝎 + 𝜔𝜔𝑧𝑧𝒆𝒆𝟑𝟑 (8) 

where 

𝒆𝒆𝟑𝟑 = [0, 0, 1]𝑇𝑇, �́�𝝎 = [𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑥𝑥  , 0]𝑇𝑇 (9) 

And. 

𝝎𝝎 × 𝑷𝑷𝑖𝑖 = (�́�𝝎 + 𝜔𝜔𝑧𝑧𝒆𝒆𝟑𝟑) × 𝑷𝑷𝑖𝑖 (10) 

 = �́�𝝎 × 𝑷𝑷𝑖𝑖 + 𝜔𝜔𝑧𝑧(𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖)

‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖2 (11) 

= 〈�́�𝝎 × 𝑷𝑷𝑖𝑖 + 𝜔𝜔𝑧𝑧(𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖) , �́�𝝎 × 𝑷𝑷𝑖𝑖 + 𝜔𝜔𝑧𝑧(𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖)〉 

= 𝜔𝜔𝑧𝑧2‖𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖‖2 + 2𝜔𝜔𝑧𝑧〈�́�𝝎 × 𝑷𝑷𝑖𝑖 , 𝒆𝒆𝟑𝟑 × 𝑷𝑷𝑖𝑖〉 + ‖�́�𝝎 × 𝑷𝑷𝑖𝑖‖2 
Using, Eqs.(11),  it is represented as quadratic function 
with respect to 𝜔𝜔𝑧𝑧 as Eqs.(12) 

‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖2 + ‖𝝎𝝎 × 𝑷𝑷𝑖𝑖‖2 = (12) 

(‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2)𝜔𝜔𝑧𝑧2

  + 2(〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉)𝜔𝜔𝑧𝑧 

+ ‖�́�𝝎 × 𝑷𝑷1‖2 + ‖�́�𝝎 × 𝑷𝑷2‖2 

(a) (b) 

Figure. 2   Existence of the sphere angular velocity vector with respect to sphere movile velocity.(a) 𝝎𝝎𝟏𝟏 is determined 
(𝝎𝝎𝟏𝟏 is lay on intersection 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬{𝑷𝑷𝟏𝟏,𝑷𝑷𝟐𝟐} and line 𝒍𝒍 . (b) 𝝎𝝎𝟐𝟐  is determined as minimizes the summed kinetic energies 
of the two rollers. 
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Hence, focusing the coefficients of Eqs.(12), 𝐸𝐸 takes 
minimal value 𝐸𝐸2 as Eqs.(13). 

𝐸𝐸2 = (‖�́�𝝎 × 𝑷𝑷1‖2+‖�́�𝝎 × 𝑷𝑷2‖2) 𝐼𝐼
𝑅𝑅2

(13) 

 −
(〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉)2

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2
𝐼𝐼
𝑅𝑅2

where  

𝜔𝜔𝑧𝑧 = −
〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2, 𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2
(14) 

𝜌𝜌2 = tan−1 �−
〈�́�𝝎 × 𝑷𝑷1,𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2,𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉

‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2
� 

(15) 
Substituting Eqs.(15) into Eqs.(3), 𝝎𝝎𝟐𝟐 as Eqs.(16). 

  𝝎𝝎𝟐𝟐 = (16) 

‖𝑽𝑽‖
𝑟𝑟 �−sin𝜑𝜑 , cos𝜑𝜑 ,−

〈�́�𝝎 × 𝑷𝑷1, 𝒆𝒆𝟑𝟑 × 𝑷𝑷1〉 + 〈�́�𝝎 × 𝑷𝑷2,𝒆𝒆𝟑𝟑 × 𝑷𝑷2〉
‖𝒆𝒆𝟑𝟑 × 𝑷𝑷1‖2 + ‖𝒆𝒆𝟑𝟑 × 𝑷𝑷2‖2

�
𝑇𝑇

3. Simulation

    This section presents the simulation results 𝝎𝝎1 (See 
Eqs.(6)), 𝝎𝝎2 (See Eqs.(16)), 𝐸𝐸1  (See Eqs.(7)) and 
𝐸𝐸2(See Eqs.(13)) with parameter 𝜑𝜑 (0° ≤ 𝜑𝜑 < 360°) in 
the given sphere mobile speed: ‖𝑽𝑽‖ = 1  [m/s]. The 
conditions are as follows: 𝐼𝐼 = 1 , 𝑅𝑅 = 00.1[m] , ‖𝑽𝑽‖ =
1 [m/s] , 𝑟𝑟 = 0.1[m],𝜃𝜃1,1 = 215°, 𝜃𝜃1,2 = 60°, 𝜃𝜃2,1 =
325°,𝜃𝜃2,2 = 60 °. 

3.1 Trajectory of the end point of the angler velocity 
vector and Totally kinetic energy 

As shown in Figure 3 (a), the ellipsoid trajectory of 
𝝎𝝎2  lies nearer to the 𝑥𝑥𝑥𝑥-plane than that of 𝝎𝝎1, and 
both trajectories cross a common line parallel to the 
𝑥𝑥-axis. 

 (a)  

(b)  
Figure 3  Simulation result. (a) Trajectory of angular velocity 
vector of sphere. (b) Totally kinetic energy  

As shown in Figure 3 (b), 𝐸𝐸1   is minimized at sphere 
direction angles 𝜑𝜑 =  90°  and  270°, 
and maximized at 𝜑𝜑 = 0° and 180°.  Meanwhile, 𝐸𝐸2   is 
minimized at 𝜑𝜑 =  0°  and 180° , and maximized at 𝜑𝜑 = 
90°  and 270° .  And. 𝐸𝐸1  and 𝐸𝐸2  are same value at 𝜑𝜑 = 
90° and 270°. 

4. Conclusion

We optimized the total kinetic energy of the two rollers’ 
movement and calculated the angle of the rotational axis 
of the sphere, and theoretical formula and we present a 
simulation of total kinetic energy.  

In future work, we plan to evaluate the kinetic energy 
of the roller arrangement at an arbitrary contact point on 
the upper hemisphere as an evaluation function. 
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