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Abstract 

Deep learning technology has made remarkable progress in recent years and has been applied to a variety of 
applications such as smartphones and cloud servers. These systems employ dedicated processors to save power 
consumptions and process massive data. In this paper, we introduce a hardware-oriented restricted Boltzmann 
machine and propose a field-programmable gate array (FPGA) infrastructure for easy verification of user circuits. 
The infrastructure makes it easy to communicate and control between the host PC and the user circuit. 
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1. Introduction 

Recent days, neural network technologies such as deep 
learning1 have been utilized many applications such as 
image processing and natural language processing. 
Especially, these technologies have been actively applied 
to various embedded fields, including smartphone 
applications. 

However, most training of deep neural networks 
(DNNs) require a massive amount of calculation 
resources and are often performed on high-performance 
computers with GPUs2. On the other hand, some 
embedded systems have restrictions such as power 
consumption and physical size to implement high-
performance computers. Therefore, application-specific 
integrated circuits (ASIC) and system-on-a-chip (SoC) 
dedicated DNNs3,4 is actively developed to accelerate the 
processing and reduce power consumptions. These some 
of the technologies have already yield practical 
applications. 

Field-programmable gate arrays (FPGAs)5 can also 
be used to create dedicated circuits and can be rewritten, 
making it possible to build more general-purpose systems. 
We have proposed resource-saving hardware 
implementation of a restricted Boltzmann machine 
(RBM)6,7, which is a building block of Deep Belief 
Networks. However, the hardware implementation of the 
user circuit on an FPGA is costly work. In this paper, we 
introduce the hardware-oriented RBM, and we propose 
an FPGA infrastructure for verifying the modules 
implemented as IP in FPGA. Also, to verify the operation 
of the proposed FPGA infrastructure, we implemented a 
hardware circuit for learning an RBM8.9 and confirmed 
that the circuit could be controlled from a host computer. 
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2. Restricted Boltzmann machine 

Restricted Boltzmann machine (RBM) is one of the 
generative model and a part of the element structures 
DNNs. An RBM has two layers called visible layer and 
hidden layer, as shown in figure 1. The probability 
distribution of an RBM calculated by Eq. (1), where 𝒗𝒗 
and 𝒉𝒉 represent the states of visible and hidden units, and 
𝜽𝜽 is a set of the network parameters. Z(𝜽𝜽) shown in Eq. 
(2) is a normalized term, and Φ shown in Eq. (3) is an 
energy function, where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 represent the biases of 
visible and hidden units, and 𝑤𝑤𝑖𝑖𝑖𝑖  is the weight. 

𝑝𝑝(𝒗𝒗,𝒉𝒉|𝜽𝜽) =
1

𝑍𝑍(𝜽𝜽) 𝑒𝑒
−Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽). (1) 

𝑍𝑍(𝜽𝜽) = �𝑒𝑒−Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽)

𝒗𝒗,𝒉𝒉

. (2) 

Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽) = −�𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖
𝑗𝑗

−�𝑏𝑏𝑗𝑗ℎ𝑗𝑗
𝑗𝑗

−��𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖ℎ𝑗𝑗
𝑗𝑗𝑖𝑖

. (3) 

The firing probabilities of the visible and hidden units 
of the RBM are calculated by the following equations, 
where σ(x) is a sigmoid function. This firing probability 
determines the state of each unit in the RBM. 

𝑝𝑝�ℎ𝑗𝑗 = 1�𝒗𝒗,𝜽𝜽� = 𝜎𝜎 �𝑏𝑏𝑗𝑗 + �𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖
𝑖𝑖

� . (4) 

𝑝𝑝(𝑣𝑣𝑖𝑖 = 1|𝒉𝒉,𝜽𝜽) = 𝜎𝜎 �𝑎𝑎𝑖𝑖 + �𝑤𝑤𝑖𝑖𝑖𝑖ℎ𝑗𝑗
𝑗𝑗

� . (5) 

3. Resource-saving random number generator 

When training an RBM, it is necessary to sample each 
state from the firing probability of the visible and hidden 

units. In this case, a large number of random number 
generators are required, but it is difficult to implement 
them in the hardware such as an FPGA. Therefore, the 
authors have proposed a method using truncated bits 
generated during fixed-point arithmetic operations as a 
substitute for random numbers6,7. 

In general, when some operations are implemented in 
digital hardware such as FPGAs, the various operations 
are implemented as fixed-point operations. In the 
operations, if there are variables with M bits and N bits 
in the integer and fractional parts, respectively, the result 
of multiplication of these values is 2M bits in the integer 
part and 2N bits in the fractional part, as shown in figure 
2. Furthermore, the bit width of the integer part is 
increased by the addition process. When the result of this 
operation is stored in the register, the incremented bits 
are truncated. In the method, this truncated bit is used as 
a substitute for a random number.  

4. Verification Infrastructure on FPGA 

Figure 3 shows the configuration of a proposed user logic 
verification infrastructure. In this system, an FPGA is 
connected to the host PC via PCI Express bus to 
communicate and control a user logic. When configuring 
the FPGA, this system uses a joint test action group 
(JTAG). The user can connect the user logic by two AXI 
interfaces to verify the user logic. In this chapter, we 
describe the main components of this system. 

4.1.  Interface between the host PC and the FPGA 

We use PCI Express bus to connect the host PC to the 
FPGA to control the user circuit and to communicate 

 
Fig. 1.  Restricted Boltzmann machine. 

 

 
Fig. 2.  Resource-saving random number generation method. 
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data with the software on the host PC. This system 
applies Xillybus10 to realize the PCI Express 
connection, which can convert the PCI Express data 
communication to first in first out (FIFO) or AXI-
Stream. The host PC can access to the FPGA by reading 
or writing device files on its operating system. 

4.2.  Internal bus and user logic interface 

This system applies AXI bus as an internal bus to 
connect all modules except the interfaces for Xillybus 
core. The user logic has AXI-Stream and AXI interface. 
The AXI-Stream interface connects to the Xillybus core 
directly, and this data path is used for data transfer. The 
AXI interface connects to AXI interconnect is used for 
the internal bus to control the user logic from the host 
PC through the special function registers (SFRs). 

4.3.  Control registers 

The software running on the host PC can control and 
monitor the user circuits on the FPGA by accessing the 
control and status registers called SFRs. The user circuit 
on the FPGA can also access the SFRs and return its 
status, such as in-process or completed, to the software. 

4.4.  AXI-Stream to AXI bridge 

The AXI-Stream to AXI bridge module extracts 
addresses and data from the 8-bit stream data sent from 
the Xillybus core to access the SFR. It is a necessary 
module to connect the core to the SFRs implemented in 
block RAM (BRAM) because the Xillybus core 
provides AXI-Stream interfaces. 

5. Verification of the infrastructure 

In order to verify the operation of the infrastructure, we 
synthesized an RBM using a conventional random 
number generators by Xilinx Vivado HLS, which is a 
high-level synthesis tool and implemented it as a user 
logic. 

In this verification, the RBM trained the MNIST11 
dataset.  The experimental conditions are listed below. 
• Visible neuron: 784 
• Hidden neuron: 150 
• Without HLS optimization options 
• Integer bit width: 14 bits 
• Fraction bit width: 18 bits 
 

Table 1 shows the resource utilization report of the 
RBM under the conditions. The target device is Xilinx 
Kintex 7 evaluation board KC705 (XC7K325T). 
 

Table 1. Resource utilization report. 
Resource Utilization Available Utilization % 
LUT 13202 203800 6.48 
LUTRAM 580 64000 0.91 
FF 16279 407600 3.99 
BRAM 276.5 445 62.13 
DSP 108 840 12.86 
IO 5 500 1.00 
GT 8 16 50.00 
MMCM 2 10 20.00 

 
We trained the RBM logic by the MNIST dataset on 

25 epochs, and after the training, we obtained the weights 
of the RBM to verify the infrastructure. The weights are 
shown in Figure 4, and we can see the infrastructure is 
working in this application. 

 
 

Fig. 3. User logic verification infrastructure. 
 

 
Fig. 4. Visualized weight parameter calculated on the FPGA 

infrastructure. 
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6. Conclusions and future works 

In this study, we proposed and constructed a system that 
connects a host PC and an FPGA via PCI Express, and 
controls a user logic from software on the host PC. By 
using this system, the user does not need to construct the 
communication and control part by ownself except the 
module which user wants to verify, and the verification 
of the hardware-oriented system becomes possible more 
quickly. 

Our future work is as follows. Firstly, to implement 
an  RBM with the resource-saving random number 
generators in hardware, and to verify its operation in the 
verification infrastructure. Secondly, to connect external 
memory, such as an SDRAM to the verification 
infrastructure to be able to handle larger network 
parameters on the FPGA. In addition, since the user 
circuit is connected to the peripheral circuits only by AXI 
bus and AXI-Stream bus, we aim to create an 
environment in which the user circuit can be reconfigured 
while the peripheral circuits are running by utilizing the 
partial configuration technology. If this technology 
becomes available, the circuit can be verified and tested 
more easily and quickly. The goal of this project is to 
create an environment that enables easier and faster 
circuit verification and experimentation. 
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