
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

A Hardware-Oriented Random Number Generation Method and
A Verification System for FPGA

Sansei Hori, Hakaru Tamukoh
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,

2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan
E-mail: hori-sansei@edu.brain.kyutech.ac.jp, tamukoh@brain.kyutech.ac.jp

https://www.kyutech.ac.jp

Abstract

Deep learning technology has made remarkable progress in recent years and has been applied to a variety of
applications such as smartphones and cloud servers. These systems employ dedicated processors to save power
consumptions and process massive data. In this paper, we introduce a hardware-oriented restricted Boltzmann
machine and propose a field-programmable gate array (FPGA) infrastructure for easy verification of user circuits.
The infrastructure makes it easy to communicate and control between the host PC and the user circuit.

Keywords: FPGA, Hardware Accelerator, Xillybus, Deep Learning, Random Number Generator, RBM

1. Introduction

Recent days, neural network technologies such as deep
learning1 have been utilized many applications such as
image processing and natural language processing.
Especially, these technologies have been actively applied
to various embedded fields, including smartphone
applications.

However, most training of deep neural networks
(DNNs) require a massive amount of calculation
resources and are often performed on high-performance
computers with GPUs2. On the other hand, some
embedded systems have restrictions such as power
consumption and physical size to implement high-
performance computers. Therefore, application-specific
integrated circuits (ASIC) and system-on-a-chip (SoC)
dedicated DNNs3,4 is actively developed to accelerate the
processing and reduce power consumptions. These some
of the technologies have already yield practical
applications.

Field-programmable gate arrays (FPGAs)5 can also
be used to create dedicated circuits and can be rewritten,
making it possible to build more general-purpose systems.
We have proposed resource-saving hardware
implementation of a restricted Boltzmann machine
(RBM)6,7, which is a building block of Deep Belief
Networks. However, the hardware implementation of the
user circuit on an FPGA is costly work. In this paper, we
introduce the hardware-oriented RBM, and we propose
an FPGA infrastructure for verifying the modules
implemented as IP in FPGA. Also, to verify the operation
of the proposed FPGA infrastructure, we implemented a
hardware circuit for learning an RBM8.9 and confirmed
that the circuit could be controlled from a host computer.

12

mailto:first_author@university.com

Sansei Hori, Hakaru Tamukoh

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

2. Restricted Boltzmann machine

Restricted Boltzmann machine (RBM) is one of the
generative model and a part of the element structures
DNNs. An RBM has two layers called visible layer and
hidden layer, as shown in figure 1. The probability
distribution of an RBM calculated by Eq. (1), where 𝒗𝒗
and 𝒉𝒉 represent the states of visible and hidden units, and
𝜽𝜽 is a set of the network parameters. Z(𝜽𝜽) shown in Eq.
(2) is a normalized term, and Φ shown in Eq. (3) is an
energy function, where 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 represent the biases of
visible and hidden units, and 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight.

𝑝𝑝(𝒗𝒗,𝒉𝒉|𝜽𝜽) =
1

𝑍𝑍(𝜽𝜽) 𝑒𝑒
−Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽). (1)

𝑍𝑍(𝜽𝜽) = �𝑒𝑒−Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽)

𝒗𝒗,𝒉𝒉

. (2)

Φ(𝒗𝒗,𝒉𝒉,𝜽𝜽) = −�𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖
𝑗𝑗

−�𝑏𝑏𝑗𝑗ℎ𝑗𝑗
𝑗𝑗

−��𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖ℎ𝑗𝑗
𝑗𝑗𝑖𝑖

. (3)

The firing probabilities of the visible and hidden units
of the RBM are calculated by the following equations,
where σ(x) is a sigmoid function. This firing probability
determines the state of each unit in the RBM.

𝑝𝑝�ℎ𝑗𝑗 = 1�𝒗𝒗,𝜽𝜽� = 𝜎𝜎 �𝑏𝑏𝑗𝑗 + �𝑤𝑤𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖
𝑖𝑖

� . (4)

𝑝𝑝(𝑣𝑣𝑖𝑖 = 1|𝒉𝒉,𝜽𝜽) = 𝜎𝜎 �𝑎𝑎𝑖𝑖 + �𝑤𝑤𝑖𝑖𝑖𝑖ℎ𝑗𝑗
𝑗𝑗

� . (5)

3. Resource-saving random number generator

When training an RBM, it is necessary to sample each
state from the firing probability of the visible and hidden

units. In this case, a large number of random number
generators are required, but it is difficult to implement
them in the hardware such as an FPGA. Therefore, the
authors have proposed a method using truncated bits
generated during fixed-point arithmetic operations as a
substitute for random numbers6,7.

In general, when some operations are implemented in
digital hardware such as FPGAs, the various operations
are implemented as fixed-point operations. In the
operations, if there are variables with M bits and N bits
in the integer and fractional parts, respectively, the result
of multiplication of these values is 2M bits in the integer
part and 2N bits in the fractional part, as shown in figure
2. Furthermore, the bit width of the integer part is
increased by the addition process. When the result of this
operation is stored in the register, the incremented bits
are truncated. In the method, this truncated bit is used as
a substitute for a random number.

4. Verification Infrastructure on FPGA

Figure 3 shows the configuration of a proposed user logic
verification infrastructure. In this system, an FPGA is
connected to the host PC via PCI Express bus to
communicate and control a user logic. When configuring
the FPGA, this system uses a joint test action group
(JTAG). The user can connect the user logic by two AXI
interfaces to verify the user logic. In this chapter, we
describe the main components of this system.

4.1. Interface between the host PC and the FPGA

We use PCI Express bus to connect the host PC to the
FPGA to control the user circuit and to communicate

Fig. 1. Restricted Boltzmann machine.

Fig. 2. Resource-saving random number generation method.

13

 A Hardware-Oriented Random Number

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

data with the software on the host PC. This system
applies Xillybus10 to realize the PCI Express
connection, which can convert the PCI Express data
communication to first in first out (FIFO) or AXI-
Stream. The host PC can access to the FPGA by reading
or writing device files on its operating system.

4.2. Internal bus and user logic interface

This system applies AXI bus as an internal bus to
connect all modules except the interfaces for Xillybus
core. The user logic has AXI-Stream and AXI interface.
The AXI-Stream interface connects to the Xillybus core
directly, and this data path is used for data transfer. The
AXI interface connects to AXI interconnect is used for
the internal bus to control the user logic from the host
PC through the special function registers (SFRs).

4.3. Control registers

The software running on the host PC can control and
monitor the user circuits on the FPGA by accessing the
control and status registers called SFRs. The user circuit
on the FPGA can also access the SFRs and return its
status, such as in-process or completed, to the software.

4.4. AXI-Stream to AXI bridge

The AXI-Stream to AXI bridge module extracts
addresses and data from the 8-bit stream data sent from
the Xillybus core to access the SFR. It is a necessary
module to connect the core to the SFRs implemented in
block RAM (BRAM) because the Xillybus core
provides AXI-Stream interfaces.

5. Verification of the infrastructure

In order to verify the operation of the infrastructure, we
synthesized an RBM using a conventional random
number generators by Xilinx Vivado HLS, which is a
high-level synthesis tool and implemented it as a user
logic.

In this verification, the RBM trained the MNIST11
dataset. The experimental conditions are listed below.
• Visible neuron: 784
• Hidden neuron: 150
• Without HLS optimization options
• Integer bit width: 14 bits
• Fraction bit width: 18 bits

Table 1 shows the resource utilization report of the
RBM under the conditions. The target device is Xilinx
Kintex 7 evaluation board KC705 (XC7K325T).

Table 1. Resource utilization report.
Resource Utilization Available Utilization %
LUT 13202 203800 6.48
LUTRAM 580 64000 0.91
FF 16279 407600 3.99
BRAM 276.5 445 62.13
DSP 108 840 12.86
IO 5 500 1.00
GT 8 16 50.00
MMCM 2 10 20.00

We trained the RBM logic by the MNIST dataset on

25 epochs, and after the training, we obtained the weights
of the RBM to verify the infrastructure. The weights are
shown in Figure 4, and we can see the infrastructure is
working in this application.

Fig. 3. User logic verification infrastructure.

Fig. 4. Visualized weight parameter calculated on the FPGA

infrastructure.

14

Sansei Hori, Hakaru Tamukoh

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

6. Conclusions and future works

In this study, we proposed and constructed a system that
connects a host PC and an FPGA via PCI Express, and
controls a user logic from software on the host PC. By
using this system, the user does not need to construct the
communication and control part by ownself except the
module which user wants to verify, and the verification
of the hardware-oriented system becomes possible more
quickly.

Our future work is as follows. Firstly, to implement
an RBM with the resource-saving random number
generators in hardware, and to verify its operation in the
verification infrastructure. Secondly, to connect external
memory, such as an SDRAM to the verification
infrastructure to be able to handle larger network
parameters on the FPGA. In addition, since the user
circuit is connected to the peripheral circuits only by AXI
bus and AXI-Stream bus, we aim to create an
environment in which the user circuit can be reconfigured
while the peripheral circuits are running by utilizing the
partial configuration technology. If this technology
becomes available, the circuit can be verified and tested
more easily and quickly. The goal of this project is to
create an environment that enables easier and faster
circuit verification and experimentation.

References

1. G.E. Hinton, S. Osindero, and Y.-W. Teh, A fast learning
algorithm for deep belief nets, Neural computation, vol.18,
no.7, pp.1527–1554, 2006.

2. NVIDIA, “NVIDIA Tesla V100 GPU Architecture”,
https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf, 2017.

3. N.P. Jouppi et al. In-datacenter performance analysis of a
tensor processing unit, Proceedings of the 44th Annual
International Symposium on Computer Architecture. 2017.
p. 1-12.

4. S. Wang, P. Kanwar, BFloat16: The secret to high
performance on Cloud TPUs,
https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-
cloud-tpus, 2019.

5. S. Trimberger, A reprogrammable gate array and
applications, Proceedings of the IEEE, 1993, 81.7: 1030-
1041.

6. S. Hori, T. Morie, and H. Tamukoh, Restricted boltzmann
machines without random number generators for efficient
digital hardware implementation, International
Conference on Artificial Neural Networks, Springer,
pp.391–398 2016.

7. S. Hori, and H. Tamukoh, A random number generation
method for hardware implemented neural networks,
IEICE Tech. Rep., vol. 119, no. 78, SIS2019-1, pp. 1-4,
June 2019.

8. A. Fischer and C. Igel, An introduction to restricted boltz-
mann machines, Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications, pp.14–36,
Springer, 2012.

9. G.E. Hinton, A practical guide to training restricted boltz-
mann machines, Technical Report UTML TR 2010-003,
Department of Computer Science, University of Tronto,
2010.

10. Xillybus PCIe IP, http://xillybus.com, access: 14th
December, 2020.

11. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E.
Howard, W. Hubbard, and LD. Jackel, Backpropagation
applied to handwritten zip code recognition, Neural com-
putation, vol.1, no.4, pp.541–551, 1989.

15

