
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 

Influence of FPGA implementation methods in High-Level Synthesis 

Yusuke Watanabe 
CRAFT WORK Co.,Ltd,  

5F OS Bldg 3-5-15 Shibasaki-cho, Tachikawa, Tokyo, 190-0023, Japan 

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 
2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan 

Hakaru Tamukoh 
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 

2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan 
E-mail: watanabe.yusuke898@mail.kyutech.jp, tamukoh@brain.kyutech.jp 

http://www.lsse.kyutech.ac.jp/english/ 

 

 

Abstract 

We explain about how the difference of implementation methods written in C++ in High-Level Synthesis (HLS) 
influences  on latency for tiny You only look once (YOLO) v2, a real-time object detection system to infer on an 
FPGA. To utilize features of FPGA, we need to implement hardware-oriented algorithms such as the weight 
binalization. We primarily focus on convolution in tiny YOLO v2 network and we report execution results on the 
Xilinx SDSoC development environment to know whether methods are appropriate or not.   

Keywords: Convolution, FPGA, High-Level Synthesis, Hardware-Oriented Algorithm  

1. Introduction 

When a robot which power supply is generally limited 
detects objects, a deep neural network is often used. 
FPGAs are good choices to implement neural networks 
while reducing energy consumption. To reduce 
implementation time in FPGAs, High-Level Synthesis 
(HLS) has been used recently. It automatically creates 
digital hardware from C++ source codes and we don't 
need to use time-consuming hardware description 
languages. But typical C++ implementation is not 
hardware-oriented and therefore created hardware don't 
bring results as we would think. 
 In this paper, we experiment with some convolution 
operations in an object detection algorithm to utilize 
FPGAs better in HLS. 

 In conclusion, when we use HLS, hardware-oriented 
implementation is preferable and brings dramatically 
improved hardware. 

2. Method 

We explain about our implementation methods of 
convolution operations which occupy much of 
processing latency in object detection. As an object 
detection system, we use binarized tiny YOLO v2 which 
binarizes original tiny YOLO v2 input and weights data 
according to Ref. [1]. Convolution operations are 
executed in three dimensions of height, width and input 
channels. Due to input and weights data binarization, we 
can use bitwise operations which reduce FPGA resources 
utilization and latency and therefore can be regarded as 
hardware-oriented. 
 Eventually we use them as convolution operations and 
experiment with the following four methods. 

10



Yusuke Watanabe, Hakaru Tamukoh 

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 

(1) no bitwise operation 
(2) width dimension 
(3) channel dimension 
(4) mix of width and channel dimension 
The first method doesn’t use bitwise operations. The 
second one uses bitwise operations along the width 
dimension and the third one along the channel. The last 
one is a mix of the second and the third. We apply bitwise 
operations to the dimension which has the largest value 
among height, width and input channel. We don't try 
along a height dimension because  height values are 
always smaller than width ones. 

3. Experiment 

To experiment, we prepare for a specific input RGB 
image file which width and height are 384 and 288 pixels 
respectively. HLS was executed on 2018.3 release of 
Xilinx SDSoC Development Environment. Our 
targetFPGA board is a Zynq UltraScale+ MPSoC 
ZCU102 evaluation kit. We used automatically created  
synthesis reports to evaluate the performance of our 
implementation. 
 Table 1 shows the clock cycles to produce output. 
Differences between min and max come from the 
presence of conditional branches in source codes. Table 
2 shows resources used to implement the binarized tiny 
YOLO v2 design in percentage. 

Table 1. Latency comparison. 

method min max 
no bitwise  op.  2,546,563,540 3,072,073,924 

bitwise op. 

width 
dimension 471,558,114 4,811,180,162 

channel 
dimension 159,132,162 3,695,079,650 

mix of 
width and 
channel 

dimension 115,836,258 4,634,795,522 

Table 2. Resources usage comparison 

method BRAM DSP FF LUT 
 

no bitwise op. 1,364 67 31,355 54,777 

bitwise 
op. 

width 
dimension 328 22 22,388 42,965 

channel 
dimension 328 10 274,116 75,125 

mix of 
width and 
channel 

dimension 328 15 181,935 79,569 
Available 1,824 2,520 548,160 274,080 

4. Results 

As for latency, if we use bitwise operations, the min clock 
cycles become lower and  the actual execution time on 
the FPGA board also becomes shorter although max 
clock cycles become higher. This fact means that most 
processing doesn't take the max clock cycles paths. 
Further if we apply bitwise operations to the mix of width 
and channel dimension as shown in Table 1, clock cycles 
reduction becomes higher. 
 About resources, if we use bitwise operations, we can 
substantially reduce BRAM usage. If a network becomes 
deeper, we use more BRAM and BRAM shortage is 
likely to happen. It is important for BRAM not to get 
wasted. 

5. Conclusion 

We conclude that hardware-oriented algorithms like 
bitwise operations in this paper are essential even when 
we design hardware from C++ using HLS. This is 
because HLS environments doesn't automatically create 
the best hardware yet. There are challenges to exactly 
grasp which implementation brings better hardware. So 
we need to become used to how to write hardware-
oriented codes in C++. Actually our current 
implementation is far from the best and we need to make 
it more hardware-oriented. 
 
References 

1. Courbariaux, Matthieu & Hubara, Itay & Soudry, Daniel 
& El-Yaniv, Ran & Bengio, Y.. (2016). Binarized Neural 
Networks: Training Deep Neural Networks with Weights 
and Activations Constrained to +1 or -1.  

2. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You 
Only Look Once: Unified, Real-Time Object Detection," 
2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Las Vegas, NV, 2016, pp. 779-788, 
doi: 10.1109/CVPR.2016.91. 

3. Nakahara, Hiroki & Yonekawa, Haruyoshi & Iwamoto, 
Hisashi & Motomura, Masato. (2017). A Batch 
Normalization Free Binarized Convolutional Deep Neural 
Network on an FPGA (Abstract Only). 290-290. 
10.1145/3020078.3021782.  

11




