
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Convolutional Network with Sub-Networks

Ninnart Fuengfusin
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,

2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan
Hakaru Tamukoh

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology,
2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan

E-mail: fuengfusin.ninnart553@mail.kyutech.jp, tamukoh@brain.kyutech.jp
https://www.brain.kyutech.ac.jp/~tamukoh/

Abstract

We propose a convolutional network with sub-networks (CNSN), a convolutional neural network (CNN) that can be
detached into sub-models on fly. Due to a conventional design of CNN, shapes of feature map are varied throughout
the model. Therefore, the hidden layer within CNN may not directly process the input image without any
modifications. To address this problem, we propose a step-down convolutional layer, a convolutional layer which
acts as an input layer for the sub-model. The step-down convolutional layer reshapes the input image to a preferred
representation to the sub-model. To train CNSN, we treat the base-model and sub-models as different models. We
separately forward- and back-propagate each model. By using multi-model loss, a linear combination of losses from
base- and sub-models, we can update weights that can be utilized in both base- and sub-models.

Keywords: Convolutional Neural Networks, Supervised Learning, Model Compression.

1. Introduction

In recent years, a convolutional neural network (CNN)
has been achieved state-of-art results in varied tasks from
an image recognition1, sematic segmentation2, and object
detection3 tasks. However, when comparing the CNN
with a multilayer perceptron (MLP) with same amount of
weight parameters, the down-side of CNN is it
significantly utilizes more multiply–accumulate
operations (MAC) than MLP. This may lead into a
bottleneck when deploying a CNN with a mobile device
that has lower computational capacity. To address this
problem, there are a several research directions attempt
to address this problem from a structure pruning4,
network sliming5, and early-exit network6.

In this research, we focus on the network sliming
direction. The network sliming focuses on create a neural
network model that can be detached into smaller models
during inference. In our previous work in this direction,
we purposed Network with Sub-Networks7 (NSN) that

introduces a layer-wise detach ability to MLP. By
detaching weight layers, this allows NSN to operate with
less amount of MAC, therefore it decreases an overall
latency of model with the trade-off in the model
performance. However, to apply the methods in NSN to
CNN, there are three compatibility issues. The first issue
is NSN requires a targeted model to contain a same shape
of feature map throughout the model. This creates a
major constraint to the CNN model. The CNN cannot
contain any spatial reduction layers, for example pooling
layers or convolutional layers without padding. Without
any spatial reduction layers, this may lead the CNN to
operate with higher MAC than the layer detaching can
reduce. The second issue is NSN requires to train N+1
models in parallel, where N is a number of hidden layers.
This indicates that NSN method is not feasible with the
recent CNN models that contains more than hundred
hidden layers. The last issue is NSN require to manually
control the gradients across base- and sub-models. This
causes the high complexity in programming.

6

Ninnart Fuengfusin, Hakaru Tamukoh

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

In this research, we propose CNSN to address all
mentioned issues from our previous work. CNSN allows
the usage of different shapes of feature map by attaching
a step-down convolutional layer as the input layer of sub-
models. This layer pre-processes the input image to a
preferred representation to the sub-model. To allow
CNSN to operate more depth CNN models, CNSN
reduces a number of sub-models by allowing only few
selected sub-models to be detached with. Instead of
manually control the gradients, we introduce a multi-
model loss, the combination of losses from a base-model
and sub-models. This loss allows the base model to be
able to detached into sub-models during inference and
reduces overall complexity to the user comparing with
NSN.

By detach convolutional layers on demand, CNSN
promises the greater reduction in MAC than NSN which
can detach only fully connected layers. Our main
contributions in this research are listed as follows:
• We propose CNSN, a CNN with ability to detach a

base-model into sub models.
• We introduce multi-model loss, a combination of

losses from base-model and sub-models.
• We introduce a step-down convolutional layer that

acts as the input layer to sub-models.

2. Convolutional Network with Sub-Networks

CNSN consists of a base-model and several sub-models.
The sub-model is a subset of the base-model with an
exception, step-down convolutional layer that is not
included in the base-model. Therefore, all parameters
from sub-models except the step-down convolutional
layer is identical to the base-model. In term of memory
usage, we only required to store the base-model and
several step-down convolutional layers.

Overview of CNSN is illustrated in Fig. 1. Fig. 1
illustrates a base-model at the top row and two sub-
models at the two bottom rows. Each base- and sub-
models can directly receive the input image and
independently product the prediction to other models.
With less amount of parameters in the model, the sub-
model has less capacity comparing to the base-model.
However, with the same reason, it promises to perform
the inference faster than the base-model.

With both base- and sub-models, CNSN consists of
the three components to make CNSN operate-able with
CNN. These three components are as follows: step-down
convolutional layer, sub-models, and multi-losses.

2.1. Step-down Convolutional Layer

The step-down convolutional layer is a convolutional
layer that is designed to solve the spatial difference
between the input and hidden layer in the CNSN. By
solving this problem, this allows CNSN to reuse a hidden
convolutional layer of base model as an input layer of sub
model. However, to achieve this, there are some concerns
as follows.

The first problem is the number of input filters of
hidden layer may not be a same comparing to the input
layer. With this issue, the hidden layer cannot process the
input image. To solve this problem, we can place the
step-down convolutional layer with the same amount of
input filters to the input layer. Another issue is the
expected size of the input feature is difference between
base- to sub-models. By adjusting the number of stride
and size of kernel of step-down convolutional layer, we
can adjust the shape of output feature maps to be process
further in the sub-model.

2.2. Sub-models

Instead of allowing every layer to be detach-able as in
NSN, CNSN only allows few sub-models to be detached.
In each batch trainings, both NSN and CNSN requires
base- and sub-models to be propagated in the same
iteration. This causes the problem that is parameters from
base- and sub-models may not be fitted in a single GPU
if the base-model is large and the base-model contains
many sub-models. Therefore, to able to train on the
bigger CNN with CNSN, we reduce the number of detach
ability to few sub-models instead.

2.3. Multi-model loss

To allow both base-model and sub-models to operate as
an individual model, we purpose a method called multi-

Fig. 1. Overview of CNSN. The top row represents a base model
of CNSN while two bottom rows represent the sub-models. Each
model can receive the image and produce the prediction. During
training, losses from all model are collected as multi-model loss.

7

Convolutional Network with Sub-Networks

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

model loss. The multi-model loss is designed to balance
between the loss from base-model and sub-models. By
assume there are N sub-models in the base-model, the
multi-model loss or 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 is formulated as shown in Eq. (1).
Where 𝑙𝑙𝑁𝑁 is the loss from a N sub-model, and 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is a
loss from the base-model. To utilize this loss, all models
must be forward propagated in the same batch training
first to find 𝑙𝑙𝑁𝑁 and 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . Then, we can use 𝑙𝑙𝑁𝑁 and 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
to find 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 .

3. Experimental results and Discussion

We implemented our CNSN using VGG-168-like model
as the base-model. Since VGG-16 is designed for
ImageNet Large Scale Visual Recognition Challenge9
(ILSVRC) 2014, some layers in VGG-16 are required to
be modified to able to operate with images from
CIFAR1010. We removed first two fully-connected layers
and modified the last fully-connected layer to contain 512
input neurons and ten output neurons. To stabilize the
training process, we also attach a batch normalization11
(BN) layers after each weight layers except on the last
fully-connected layer. We utilized ReLU as an activation
function except the last fully-connected layer that we
assigned with the log-softmax instead.

In this experiment, the overall setting is illustrated in
Fig. 1. We assigned with two sub-models within the base-
model. Without including any of activation, BN, and
pooling layer, the first sub-model or sub-model0 is the
base-model after removing first two convolutional layers.
The second sub-model, sub-model1 is the base-model
after removing first seven convolutional layers. The step-
down convolutional layer for sub-model0 is the
convolutional layer with stride two and kernel size two.
For sub-model1, it is the convolutional layer with stride
eight and kernel size eight. We defined the baseline
model as a VGG-16-like model that was trained without
any modifications.

We conducted a benchmark with CIFAR10 dataset.
CIFAR10 consists of 10 different classes. Each class
consists of 5,000 training and 1,000 test images. We
performed the data augmentations by padding 4 pixels
into the training image and randomly crop back to
original size. The training images were further
augmented by horizontal flipping and normalizing with a
channel-wise mean and standard deviation of CIFAR10
dataset. We trained all models with stochastic gradient
descent with momentum of 0.9. We set an initial learning
rate as 10−2 and step-down to one-tenth after we trained

for 50, 100 and 150 epoch. We warmed-up the learning
rate for an epoch and trained for totally 300 epochs using
the training batch size as 32. We reported the best test
accuracy that occurred during the training.

The experimental results are as shown as Table 1. In
Table 1, we compared the CNSN base model with the
baseline model with the same setting as CNSN except for
the weight decay. We found out the optimized weight
decays are differed between the baseline model.
 and CNSN. Therefore, we applied the different weight
decay to each model.

Our base-model achieved the loss in test accuracy for
0.0049 in exchanging to the ability to detach into sub-
models. The sub-models1 able to reduces more than half
of MAC comparing with the baseline model, however
this came with the significantly drop in term of test
accuracy.

4. Conclusion

We propose CNSN, a CNN that can be detached into
smaller CNNs on fly. To gain the detach ability to CNN,
we propose the multi-model loss and step-down
convolutional layer. The base-model of CNSN can
deliver the performance that is compare-able with the
regular trained models, while sub-models significantly
reduces the amount of MAC, however with the trade-off
in loss in test accuracy.

Acknowledgements
This research was supported by JSPS KAKENHI
Grant Numbers 17K20010.

References

1. Tan, Mingxing, and Q. V. Le. "Efficientnet: Rethinking
model scaling for convolutional neural networks." arXiv
preprint arXiv:1905.11946 (2019).

2. Chen, Liang-Chieh, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. "Encoder-decoder
with atrous separable convolution for semantic image
segmentation." In Proceedings of the European
conference on computer vision (ECCV), pp. 801-818. 2018.

𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 = �𝑙𝑙𝑁𝑁 + 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑁𝑁

1

(1)

Test

accuracy
MAC

Weight decay

sub-model0 0.7738 0.124 G
6 × 10−4 sub-model1 0.9115 0.275 G

base-model 0.9267 0.314 G
baseline
model 0.9316 0.314 G

6 × 10−3

Table 1. Results of CNSN models comparing a base-line
model on CIFAR10 dataset.

8

Ninnart Fuengfusin, Hakaru Tamukoh

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

3. Tan, Mingxing, Ruoming Pang, and Quoc V. Le.
"Efficientdet: Scalable and efficient object detection."
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10781-10790. 2020.

4. Li, Hao, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. "Pruning filters for efficient
convnets." arXiv preprint arXiv:1608.08710, 2016.

5. Yu, Jiahui, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. "Slimmable neural networks." arXiv
preprint arXiv:1812.08928, 2018.

6. Teerapittayanon, Surat, Bradley McDanel, and Hsiang-
Tsung Kung. "Branchynet: Fast inference via early exiting
from deep neural networks." In 2016 23rd International
Conference on Pattern Recognition (ICPR), pp. 2464-
2469. IEEE, 2016.

7. Fuengfusin, Ninnart, and Hakaru Tamukoh. “Network
with Sub-Networks.” Proceedings of International
Conference on Artificial Life and Robotics, vol. 25, 2020,
pp. 191–194.

8. Simonyan, Karen, and Andrew Zisserman. "Very deep
convolutional networks for large-scale image
recognition." arXiv preprint arXiv:1409.1556, 2014.

9. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.
and Berg, A.C., 2015. Imagenet large scale visual
recognition challenge. International journal of computer
vision, 115(3), pp.211-252.

10. Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton. "The
cifar-10 dataset." online: http://www.cs.toronto.
edu/kriz/cifar. html 55 (2014).

11. Ioffe, Sergey, and Christian Szegedy. "Batch
normalization: Accelerating deep network training by
reducing internal covariate shift." arXiv preprint
arXiv:1502.03167, 2015.

9

https://academic.microsoft.com/paper/3008748866/reference?showAllAuthors=1
https://academic.microsoft.com/paper/3008748866/reference?showAllAuthors=1

