

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Improvement of RETUSS to Ensure Traceability between Sequence Diagram in UML and
Java Source Code in Real Time

Kaoru Arima*, Tetsuro Katayama*, Yoshihiro Kita†,
Hisaaki Yamaba*, Kentaro Aburada*, Naonobu Okazaki*

*Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki,
1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192, Japan

†Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki,
1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki, 851-2195, Japan
arima@earth.cs.miyazaki-u.ac.jp, kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp,

yamaba@cs.miyazaki-u.ac.jp, aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

Abstract

Ensuring traceability of software deliverables is one of the methods to ensure software quality. RETUSS (Real-time
Ensure Traceability between UML and Source-code System) is a tool that saves labor and time, and eliminates
mistakes by human handling in ensuring traceability between UML and source codes. However, RETUSS is not
useful due to its limited scope of application. This paper improves the usefulness of RETUSS by extending the scope
of application of sequence diagram in UML and Java source code.

Keywords: software quality, traceability, UML, sequence diagram, Java

1. Introduction

The importance of software in society is increasing, and
system failures and software bugs cause significant
economic and social impact. Therefore, ensuring the
quality of systems and software has become more
important. Ensuring traceability of software deliverables
is one of the methods to ensure software quality.1 It can
specify the scope of the impact due to the modification in
the requirements and remove the gap between the
documents and the source codes. However, it has the
following two problems.

 Taking much labor and time to modify similarly

other related deliverables in modifying a part of
deliverables

 Having a risk that you cannot ensure traceability
because of causing mistakes to ensure traceability
by human handling

In order to solve them, our laboratory developed

RETUSS (Real-time Ensure Traceability between UML
and Source-code System).2,3 RETUSS ensures
traceability between UML (Unified Modeling

Language)4 and source codes by transforming them to
each other in real time. Therefore, RETUSS can save
labor and time, and eliminate mistakes by human
handling in ensuring traceability between UML and
source codes. RETUSS has the following functions.

 Description of class diagram
 Description of sequence diagram
 Description of Java source codes
 Description of C++ source codes
 Bidirectional transformation between class diagram

and Java source codes
 Bidirectional transformation between class diagram

and C++ source codes
 Bidirectional transformation between sequence

diagram and Java source codes

However, RETUSS is not useful in ensuring traceability
between sequence diagram and Java source codes due to
its limited scope of application.

This paper improves the usefulness of RETUSS by
extending the scope of application of sequence diagram
and Java source codes.

352

Kaoru Arima, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

2. The extended RETUSS

This paper extends the following two functions of the
existing RETUSS.

 Description of sequence diagram
 Bidirectional transformation between sequence

diagram and Java source codes

Fig. 1 shows the interface of the extended RETUSS.
The extended RETUSS has the main window and the
source code window. The main window is a window for
describing UML. The source code window is a window
for writing source codes.

Fig. 2 shows the structure of the extended RETUSS.
The extended RETUSS consists of five parts: display part,
correspondence part, description part, transformation
part, and storage part. To extend the function of the
description of sequence diagram, we mainly extend the
display part, correspondence part, and description part.
To extend the function of the bidirectional transformation
between sequence diagram and Java source codes, we
mainly extend the description part, transformation part,
and storage part.

2.1. Extending the function of the description of
sequence diagram

We add the following three functions to the function of
the description of the sequence diagram.

 Adding a message
 Adding a combined fragment
 Deleting elements

By adding these functions, a user can edit the sequence
diagram directly on RETUSS.

To add these three functions, we extend the display
part, the correspondence part, and the description part.
The extended display part displays three buttons in the
main window: Message button, Combined Fragment
button, and Delete button. The extended correspondence
part has three new processes: displaying the dialog to add
a message, displaying the dialog to add a combined
fragment, and displaying the dialog to delete elements.
The three processes are called from the event handlers of
the three buttons displayed by the extended display part.
The extended description part has four new processes:
adding a message, adding a combined fragment, deleting
a message, and deleting a combined fragment. These four
processes are called by correspondence part and they
change the sequence diagram information in the storage
part.

Fig. 1. The interface of the extended RETUSS

Fig. 2. The structure of the extended RETUSS

2.2. Extending the function of the bidirectional
transformation between sequence diagram
and Java source codes

We define four new transformation rules to extend the
scope of the bidirectional transformation between
sequence diagram and Java source codes. Table 1 shows

353

Improvement of RETUSS to

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Table 1. The four new transformation rules for the bidirectional transformation between sequence diagram and Java source codes.

Name in sequence
diagram Notation in sequence diagram Name in Java Syntax in Java

Message

Method invocation
expression

methodName(parameter, …);

Method declaration
accessModifier returnType
methodName(parameterType
parameterName, …) { … }

Combined fragment opt

if-then statement
if (expression1) {

…
}

Combined fragment alt

if-then-else
statement

if (expression1) {
…

} else if (expression2) {
…

} …

Combined fragment loop

while statement

while (expression) {
…

}

for statement

for(int i=X; i<Y; i++) { … }
for(int i=X; i<=Y; i++) { … }
for(int i=X; i>Y; i--) { … }
for(int i=X; i>=Y; i--) { … }

the four new transformation rules for the bidirectional
transformation between sequence diagram and Java
source codes. By the transformation rules in Table 1, the
extended RETUSS can transform the following sequence
diagram elements into Java source code syntaxes.

 Message of operation invocation with parameters
 Combined fragment opt
 Combined fragment alt
 Combined fragment loop

In addition, the extended RETUSS can transform the
following Java source code syntaxes into sequence
diagram elements.

 Method invocation expression with parameters
 Method declaration
 if-then statement
 if-then-else statement
 while statement
 for statement

Here, the extended RETUSS does not support nested
structure of the above syntaxes.

To implement the transformation rules in Table 1, we
extend the description part, transformation part, and
storage part. The extended description part has a new

process: transformation from Java source codes to Java
information. The extended transformation part has a new
process: transformation between sequence diagram
information and Java information based on the
transformation rules in Table 1. The extended storage
part has three new classes in the sequence diagram
information: interaction fragment class, combined
fragment class, and interaction operand class. In addition,
the extended storage part has three new classes in the
Java information: If class, For class, and While class.

3. Application example

Fig. 3 shows the screenshot when the Java source codes
are written in the extended RETUSS. It shows that the
extended RETUSS can ensure traceability between
sequence diagram and Java source code in writing if-
then-else statement, while statement, and for statement of
Java. In addition, we confirmed that the extended
RETUSS can ensure traceability between sequence
diagram and Java source codes in describing sequence
diagram.

4. Evaluation

To evaluate the usefulness of the extended RETUSS, we
experiment with four students of University of Miyazaki.
The steps of the experiment are shown below.

354

Kaoru Arima, Tetsuro Katayama, Yoshihiro Kita, Hisaaki Yamaba, Kentaro Aburada, Naonobu Okazaki

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

(i) The experimenter prepares traceable sequence
diagrams and Java source codes. We call these
deliverables.

(ii) The experimenter instructs the participants to
change the deliverables.

(iii) The participants change the deliverables as
instructed

There are two types in the changes: sequence diagrams
changes, Java source codes changes. There are two cases
below for participants to change the deliverables.

 Case A: using the extended RETUSS.
 Case B: using EA (Enterprise Architect)5 and a text

editor.

Table 2 shows the times it took the participants to
change in the two cases and the two changes. From Table
2, the time in case A was about 76.5% shorter than the
time in case B, when the sequence diagrams changes was
instructed. In addition, the time in case A was about
69.0% shorter than the time in case B, when the Java
source code changes were instructed.

In summary, the extended RETUSS can save labor
and time in ensuring traceability between sequence
diagram and Java source codes. Therefore, the usefulness
of RETUSS has improved by extending its scope of
application while retaining the benefits of the existing
RETUSS.

5. Conclusion

This paper has improved the usefulness of RETUSS by
extending the scope of application of sequence diagram
and Java source codes. The extended RETUSS allows
you to edit sequence diagram directly on RETUSS, and
also supports four new transformation rules for sequence
diagram and Java source codes.

The experimental results showed that the extended
RETUSS can save the time to ensure traceability between
sequence diagram and Java source code by about 76.5%
for sequence diagram changes, and about 69.0% for Java
source code changes. Therefore, the usefulness of
RETUSS has improved by extending its scope of
application while retaining the benefits of the existing
RETUSS.

The future works are as follows.

 Corresponding to other sequence diagram elements
 Corresponding to other Java source code syntaxes
 Corresponding to other UML diagrams
 Corresponding to other programming languages

Fig. 3. The screenshot when the Java source codes are written
in the extended RETUSS

Table 2. The times it took the participants to change (seconds)

Participants
Sequence

diagrams changes
Java source codes

changes
Case A Case B Case A Case B

1 59 205 134 369
2 62 221 95 346
3 38 216 102 361
4 60 289 126 398

Average 54.75 232.75 114.25 368.50

References

1. SQuBOK Sakutei Bukai, Guide to the Software Quality
Body of Knowledge, 2nd edn. Ohmsha, 2014 (in Japanese).

2. Tetsuro Katayama, Keisuke Mori, Yoshihiro Kita, Hisaaki
Yamaba, Kentaro Aburada, Naonobu Okazaki: RETUSS:
Ensuring Traceability System between Class Diagram in
UML and Java Source Code in Real Time, Journal of
Robotics, Networking and Artificial Life, Vol. 5(2), pp.
114–117, 2018.

3. GitHub, RETUSS: Real-time Ensure Traceability between
UML and Source-code System,
https://github.com/Morichan/Retuss (Accessed 2020-12-
09)

4. The Object Management Group, Welcome to UML Web
Site!, https://www.uml.org/ (Accessed 2020-12-09)

5. SPARX SYSTEMS, UML modeling tools for Business,
Software, Systems and Architecture,
https://www.sparxsystems.com/ (Accessed 2020-12-09)

355

