
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Development of an Early Prototype Tool for Learning Software Modeling
Using Extended Place/Transition Net

Tomohiko Takagi
Faculty of Engineering and Design, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan

Akio Usuda
Faculty of Engineering, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan
E-mail: takagi@eng.kagawa-u.ac.jp, s17t213@stu.kagawa-u.ac.jp

Abstract

This paper shows an early prototype tool for learning software modeling using Extended Place/transition Net (EPN),
and then gives the discussion about its effectiveness and challenges. A user of the tool, that is, an engineer tries to
construct his/her EPN model based on given software requirements by selecting and putting the given components
of EPN. The EPN model is converted into a VDM++ specification for a user who is familiar with Vienna
Development Method (VDM). Also, the behavior of software based on the EPN model is partially visualized by using
animated graphics for a user who is a learner at the first stage. In the end, the correctness of the user's EPN model is
automatically checked.

Keywords: software modeling, place/transition net, VDM, personal on-demand learning

1. Introduction

Extended Place/transition Net (EPN)1 is Place/transition
Net (PN) that includes some additional elements written
in VDM++2 to enhance its representation power, and can
be used to formally model the state transition-based
behavior of software in development processes. An EPN
model, that is, a software model drawn by using EPN, can
be executed on interpreters to understand and validate
software specifications, and also can be converted to
another formal software specification, source codes, and
test cases. However, the use of EPN is based on technical
knowledge and skills, and therefore engineers will need
to learn them.

This paper shows an early prototype tool for learning
software modeling using EPN. A user of the tool, that is,
an engineer tries to construct his/her EPN model based
on given software requirements by selecting and putting

the given components of EPN. The EPN model is
converted into a VDM++ specification3 for a user who is
familiar with Vienna Development Method (VDM). Also,
the behavior of software based on the EPN model is
partially visualized by using animated graphics4,5 for a
user who is a learner at the first stage. In the end, the
correctness of the user's EPN model is automatically
checked. This study is intended to support personal on-
demand learning, and the key ideas of this study are (1)
the construction using components, (2) the conversion
into VDM++ specifications, and (3) the visualization
using animated graphics.

This paper is organized as follows. Section 2 shows
the steps to learn software modeling using EPN in this
study. Section 3 illustrates the early prototype tool we are
developing in this study, and then section 4 gives the
discussion about its effectiveness and challenges.

340

Tomohiko Takagi, Akio Usuda

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

2. Learning Software Modeling Using EPN

This section shows the three steps to learn software
modeling using EPN in this study, that is, (1) creating
exercises, (2) working on exercises, and (3) checking
learner's answers. They have been developed based on
our previous study5.

2.1. Creating exercises

In the first step, instructors, that is, skilled engineers
create exercises for learners. Each exercise consists of (i)
software requirements, (ii) a completed EPN model, (iii)
component candidates, (iv) animated graphics, and (v)
hints to construct EPN models. They are generally
created in this order.

2.1.1. Software requirements

The software requirements are written in natural
languages. They should include enough information to
construct a correct EPN model in the next step, such as
the use case scenarios, state transitions, data processing,
and constraints of the software.

2.1.2. Completed EPN model

The completed EPN model is a correct answer in the
exercise, and will be used to check learner's answers in
the last step. It should be strictly based on the software
requirements.

2.1.3. Component candidates

The component candidates that will be used by learners
for constructing their EPN models in the next step are
classified into the following two sets.

One is the set of correct components, and they are
obtained by disassembling the completed EPN model, as
shown in Fig. 1. When the exercise is intended for
learners at the first stage, the size of each component may
be made bigger in order to reduce the level of its
difficulty. Another is the set of incorrect components, and
they are created by mutating the correct components.
Model-based mutation operators6 can be applied to the
elements of PN (that is, places, transitions, arcs, and
tokens), and traditional mutation operators can be applied
to the extension from PN to EPN (that is, actions and
guards written in VDM++). When the exercise is
intended for learners at the first stage, the set of incorrect

components may be made smaller or empty in order to
reduce the level of its difficulty.

The instructors should confirm whether the
component candidates lead to any other correct answers,
that is, EPN models that do not have the same structure
as the completed EPN model but satisfy the software
requirements.

2.1.4. Animated Graphics

The animated graphics consist of several graphical parts,
and visualize the behavior of software based on a given
EPN model. Some of the graphical parts are programmed
to move by trigger, such as the fire of specific transitions

Fig. 1. Creation of the set of correct components (overview).

(a) Completed EPN model

................... ...

... ...

...

...

...................

...................

...................

................... ...

...................

...................

(c) Correct components for advanced learners

...................

... ...

...

...

...................

...................

...................

...................

...

...

...................

...................

(b) Correct components for learners at the first stage

......

....

......

...

......

....

......

...

...

...

...

......

....

......

...

...

...

...

......

....

......

...

......

....

......

...

......

....

......

...

......

....

......

...

Legend
place

transition

token
arc

................ extension

341

 Development of an Early

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

and the satisfaction of specific conditions in a given EPN
model.

2.1.5. Hints to construct EPN models

The hints are written in natural languages, and will be
used by learners as clues about how their EPN models
can be correctly constructed. They are not always needed
when the exercise is for advanced learners.

2.2. Working on exercises

In the second step, learners work on the exercises the
instructors have created. The learners are given all the
materials excepting the completed EPN model. They will
firstly try to understand the given software requirements
and hints to construct EPN models. After that, they will
select arbitrary components from the given component
candidates in order to add onto their EPN models. The
learners' EPN models under construction are
automatically converted into VDM++ specifications3,
and learners who are familiar with VDM will review the
VDM++ specifications in order to confirm their EPN
models from another viewpoint. Also, learners at the first
stage will watch animated graphics in order to confirm
their EPN models intuitively4,5. When learners finish
constructing their EPN models, they move to the last step.

2.3. Checking learner's answers

In the third (that is, the last) step, an EPN model that has
been constructed by a learner in the second step is
compared to the completed EPN model that has been
constructed by the instructors in the first step. If they are
exactly the same, it is concluded that the learner has
successfully constructed the correct EPN model. If they
are not the same, the learner shall try to correct all the
mistakes on his/her EPN model. If needed, the learner is
given additional hints to construct the correct EPN model,
such as the information about the mistaken parts in
his/her EPN model and the unsatisfied items in the given
software requirements.

3. Early Prototype Tool

In this study, we are developing an early prototype tool
for learning software modeling using EPN. The tool does
not fully support the steps that have been discussed in the
previous section, but includes some essential functions.

Fig. 2 is the screen shot of the tool that shows a
sample exercise on the subject of a simple elevator
control system. The tool is used on a Web browser. Its
GUI chiefly consists of (A) the description of software
requirements, (B) the description of hints to construct
EPN models, (C) the pane to construct a learner's EPN
model, (D) the pane to select component candidates, (E)
the pane to show a VDM++ specification, and (F) the
pane to show animated graphics.

In (D), component candidates are classified by the
kinds of elements of EPN, that is, places, transitions,
tokens, guards and actions. A learner can select an
arbitrary one from (D), and can move it to (C).
Components that have been moved from (D) can be
returned to (D) by the learner. When a learner's EPN
model is changed, its VDM++ specification shown in (E)
is automatically updated in order to help a learner who is
familiar with VDM to confirm his/her EPN model from
another viewpoint. Also, in order to help a learner at the
first stage to confirm his/her EPN model intuitively, (F)

Fig. 2. Screen shot of our early prototype tool.

(C)

(A)

(B)

(D)

(E)

(F)

342

Tomohiko Takagi, Akio Usuda

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

is intended to show the animated graphics of the elevator
of which behavior is based on his/her EPN model. A
learner can check the correctness of his/her EPN model,
that is, can perform the automatic comparison between
his/her EPN model and the correct EPN model at any
time. The result of checking the correctness is indicated
as "O" or "X" that are the symbols for a correct/incorrect
answer, respectively. When a learner's EPN model is
incorrect, the messages about mistakes may be given to
the learner in order that he/she retries to the exercise.
When the learner gives up constructing his/her EPN
model, the completed EPN model is shown in (C).

4. Discussion

As shown in the previous sections, the key ideas of this
study are (1) the construction using components, (2) the
conversion into VDM++ specifications, and (3) the
visualization using animated graphics. (1) will be useful
to adjust the level of the difficulty of exercises. (2) will
help learners who are familiar with VDM to confirm their
EPN models from another viewpoint. (3) will help
learners at the first stage to confirm their EPN models
intuitively. However, through the development of the
early prototype tool, we found the following challenges
to be addressed in future:
• As with the method of Ref. 4, the creation of

exercises, particularly the creation of animated
graphics will require hard effort, and authoring tools
should be introduced to support it.

• The animated graphics will not be so easy to quickly
reveal learner's mistakes included in a large and
complex EPN model. Optimized test case generation
techniques may need to be introduced to solve it.

• Component candidates often lead to other correct
answers. Instructors will require some techniques
and tools to avoid the other correct answers or to
confirm whether the set of their completed EPN
models covers all the possible correct answers.

There are some closely related works. For example, a
learning support technique for software modeling using
PN was discussed in our previous study5. The steps
discussed in section 2 have been developed based on it.
However, unlike the previous study, this study is
intended to support personal on-demand learning, and
therefore does not include the steps of advising, review,
and demonstration by instructors and other learners. Also,
the previous study does not include the discussion about
tools, and does not take EPN and VDM as objects of

study. Ref. 4 shows a training support method and tool
for bug fixing of EPN models. The characteristics of this
previous study are to introduce animated graphics and to
focus on bug fixing. The idea of the animated graphics is
used also in this study.

5. Conclusion

In this paper, we showed an early prototype tool for
learning software modeling using EPN, and then gave the
discussion about its effectiveness and challenges. The
key ideas of this study are (1) the construction using
components, (2) the conversion into VDM++
specifications, and (3) the visualization using animated
graphics. In a future study, we plan to develop the
prototype tool and conduct preliminary experiments to
improve our method and tool.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Number JP17K00103.

References

1. T. Takagi, R. Kurozumi and T. Katayama, State Transition
Tuple Coverage Criterion for Extended Place/Transition
Net-Based Testing, Proceedings of Pacific Rim
International Symposium on Dependable Computing,
pp.29-30, Dec. 2019.

2. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat and M.
Verhoef, Validated Designs for Object-Oriented Systems,
Springer-Verlag London, 2005.

3. T. Takagi and R. Kurozumi, Prototype of a Modeling Tool
to Convert between Extended Place/Transition Nets and
VDM++ Specifications, Proceedings of International
Conference on Artificial Life and Robotics, pp.157-160,
Jan. 2019.

4. T. Takagi, S. Morimoto, Y. Ue and Y. Imai, Animated
Graphics-based Training Support Method and Prototype
Tool for Bug Fixing of Extended Place/Transition Nets,
Journal of Robotics, Networking and Artificial Life, Vol.5,
No.4, pp.278-282, Mar. 2019.

5. Y. Ue and T. Takagi, Learning Support Technique of
Software Visual Modeling Using Place/Transition Nets,
Proceedings of International Conference on Artificial Life
and Robotics, pp.751-754, Jan. 2020.

6. T. Takagi, R. Takata, Z. Furukawa, F. Belli and M. Beyazıt,
Metrics for Model-Based Mutation Testing Based on
Place/Transition Nets, Proceedings of Joint Conference of
International Workshop on Software Measurement and
International Conference on Software Process and
Product Measurement, pp.7-10, Nov. 2011.

343

