
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Simulation and Regression Testing for Behavior of Software Models
Based on Extended Place/Transition Net with Attributed Tokens

Tomohiko Takagi
Faculty of Engineering and Design, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan

Ryo Kurozumi
Graduate School of Engineering, Kagawa University

2217-20 Hayashi-cho, Takamatsu-shi, Kagawa 761-0396, Japan
E-mail: takagi@eng.kagawa-u.ac.jp, s19g457@stu.kagawa-u.ac.jp

Abstract

We propose a technique of simulation and regression testing for Extended Place/transition Net with Attributed Tokens
(EPNAT) models, and then show an early prototype tool to partially support it. In the technique, the information
about a current marking (a current distribution of attributed tokens, including current values of attributes), current
values of global variables, and current fireable transitions is indicated for the simulation, and also the good execution
traces in the simulation are recorded as test cases for the regression testing. When an EPNAT model is modified, the
test cases can be applied to it in order to reveal regression failures.

Keywords: software modeling, place/transition net, VDM, simulation, regression testing

1. Introduction

Formal specifications that represent abstracted software
requirements in unambiguous and executable forms play
an important role in the development of high-quality
software. Extended Place/transition Net with Attributed
Tokens (EPNAT)1 is a formal specification description
language for modeling the expected behavior of state
transition-based software that consists of multiple objects,
such as modules and subsystems. In an EPNAT model,
each attributed token corresponds to an object and has
variables to characterize the object, which are called
attributes. The firing of transitions leads to the increase,
decrease, and move of attributed tokens, the change of
values of attributes and global variables, and so on. The
behavior is constrained by invariants, pre-conditions,
post-conditions, and type constraints. Engineers need to

understand such complex aspects of the EPNAT model
when constructing, validating and refining it.

In order to address this problem, we propose a
technique of simulation and regression testing for
EPNAT models, and then show an early prototype tool to
partially support it. In the technique, the information
about a current marking (that is, a current distribution of
attributed tokens, including current values of attributes),
current values of global variables, and current fireable
transitions is indicated for the simulation, and also the
good execution traces in the simulation are recorded as
test cases for the regression testing. When an EPNAT
model is modified, the test cases can be applied to it in
order to reveal regression failures.

This paper is organized as follows. Section 2
describes our technique of simulation and regression
testing for EPNAT models, and then section 3 illustrates

336

Tomohiko Takagi, Ryo Kurozumi

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

our early prototype tool. Finally, we show discussion and
future work in section 4.

2. Technique Overview

In this section, we propose the technique of simulation
and regression testing for EPNAT models.

2.1. Simulation of EPNAT models

The simulation is intended to help engineers to construct,
validate, refine, and understand EPNAT models, and it is
applicable to both completed EPNAT models and
EPNAT models under construction. The simulation of a
given EPNAT model is performed according to the
following procedure. The overview of the procedure is
shown in Fig. 1. Step 2, 3, 5, and 7 can be automatically
executed, and should be supported by a tool.
Step 1. An engineer specifies a starting state (that is, a

state to start the simulation) according to the aim of
the simulation. In this study, a state is characterized
by a marking and values of all the global variables in
an EPNAT model. Note that a marking in an EPNAT
model includes values of attributes. The starting state
does not necessarily need to be an initial state (that is,
a state established just after software is invoked) or
reachable state (that is, a state that can be reached
from the initial state).

Step 2. If the starting state violates any type constraints
and invariants, the procedure returns to Step 1.
Otherwise, the current state of the given EPNAT
model is initialized to the starting state.

Step 3. The pre-conditions of all the transitions are
evaluated in order to determine fireable transitions in
the current state. If there are no fireable transitions,
the simulation is terminated.

Step 4. The engineer confirms the determined fireable
transitions and acceptable values of their arguments.
If he/she finds any faults, the simulation will be
stopped. Otherwise, the engineer selects one arbitrary
fireable transition and specifies values of its
arguments according to the aim of the simulation.

Step 5. If the specified values of the arguments violate
any type constraints and invariants, the procedure
returns to Step 4. Otherwise, the selected transition is
fired, and then its actions are executed by using the
specified values of arguments. As a result of them, the
current state is changed. If any invariants, and the

post-condition of the fired transition are violated due
to some sort of failures included in the given EPNAT
model, the simulation will be stopped.

Step 6. The engineer confirms the current state. If he/she
finds any faults, or if he/she achieves the aim of the
simulation, the simulation will be terminated.

Step 7. This procedure returns to Step 3.

2.2. Regression Testing of EPNAT models

A good execution trace in the simulation is recorded as a
test case for the regression testing. In this context, the
word "good" means that (a) the execution trace does not
include the occurrence of faults, (b) the execution trace is
useful for the growth of test coverage, (c) the execution
trace corresponds to the typical use of software, and (d)
the execution trace is useful to cover fault-prone parts2.
The item (a) is particularly essential for a test case.

Fig. 1. Procedure of simulation (overview).

Step 1. Specify a starting state.

Step 2. Initialize the current state to the starting state.

Step 3. Evaluate pre-conditions of all the transitions.

Step 4 (2). Select one arbitrary fireable transition.
Specify values of its arguments.

Step 4 (1). Confirm the fireable transitions and
acceptable values of their arguments.

Step 5. Fire the selected transition, and execute its actions.

Step 6. Confirm the current state.

start

end

violated?yes no

no fireable
transitions? yes

no

faults?
yes

no

violated?yes
no

violated? yes
no

faults? or
the aim achieved?

yes
no (Step 7)

* The shaded parts can be automatically executed.

337

 Simulation and Regression Testing

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

When an EPNAT model is modified, the test cases
are applied to it in order to reveal regression failures.
Some model-based coverage criteria3,4 can be introduced
to evaluate the effectiveness of the regression testing.
Additionally, EPNAT models can be converted into
VDM++ specifications1,5, and thus common code-based
coverage criteria6 also can be introduced. In general,
multiple test cases need to be executed to satisfy
coverage criteria. Also, regression testing is repeatedly
performed, and thus it should be automated by a tool in
order to save time and effort.

Fig. 2 shows the abstracted structure of a test case for
an EPNAT model. It is written in BNF, and parentheses
are used to represent an optional element. A test case is a
sequence of successive state transitions of arbitrary
length. Each transition is identified by an event, and can
have values of arguments. Each transition should follow
fireable transitions that include its event. Fireable
transitions are determined by a state, and thus should
follow a state in a test case. Each state is characterized by
a marking and values of all the global variables. If an
invalid value is given to an argument of a transition in
order to test invariants and a post-condition, the
following state should be a violation state, that is, a state
in which some invariant or the post-condition has been
violated. A marking is expressed as a sequence of
attributed tokens in each place, and an attributed token is
characterized by object type and values of attributes.
Each place can hold one or more attributed tokens, but
the place and its attributed tokens need to have the same
object type. Therefore, the object type of each attributed
token is important information in regression testing of
EPNAT models.

Transitions and a starting state correspond to test data
(also called test input). On the other hand, fireable
transitions and states excepting the starting state
correspond to expected output. When there are no

differences between expected output and test output
through the execution of a given test case, it is concluded
that the test case has successfully passed. Otherwise, an
engineer needs to find and fix a regression failure, or
update the test case so as to reflect the latest true software
specification. After that, the engineer should perform
confirmation testing, that is, apply the failed test case to
the fixed EPNAT model, or apply the updated test case
to the EPNAT model.

3. Early Prototype Tool

This section shows our early prototype tool to partially
support the simulation and regression testing of EPNAT
models. The tool includes two functions. One is an
EPNAT editor to support the construction of EPNAT
models, which has been developed in our previous study1.
Another is an EPNAT simulator we are developing in this
study, and it can be invoked from the EPNAT editor. The
EPNAT simulator interacts with an existing tool called
VDMJ5 in order to execute a given EPNAT model.

Fig. 3 shows a screen shot of the EPNAT simulator
that executes the simulation of the EPNAT model that
represents the behavior of a simple load balancer1. The
EPNAT model under simulation is visualized on the right
pane of the EPNAT simulator. Fireable transitions in the
current state are highlighted in green. Therefore, an
engineer as a user of the EPNAT simulator will be able
to easily confirm them, and select a next transition in
order to proceed with his/her simulation. Also, the
current state and the simplified execution trace
(described as a sequence of fired transitions) are
indicated on the left pane. When an engineer selects a
fireable transition and specifies its values of arguments
on the right pane, the EPNAT simulator automatically
executes the firing of the selected transition, and then
updates the current state, the execution trace, and the
graphical image of the EPNAT model. An engineer can

<test-case> ::= <state> (<fireable-transitions> <state-transitions>)
<state-transitions> ::= <transition> <state> (<fireable-transitions> <state-transitions>)
<fireable-transitions> ::= <event> (<fireable-transitions>)
<transition> ::= <event> <values-of-arguments>
<state> ::= <marking> <values-of-global-variables> | <violation-state>
<marking> ::= <place> <attributed-tokens-in-the-place> (<marking>)
<attributed-tokens-in-the-place> ::= <attributed-token> (<attributed-tokens-in-the-place>)
<attributed-token> ::= <object-type> <values-of-attributes>

Fig. 2. Abstracted structure of a test case for an EPNAT model (written in BNF).

338

Tomohiko Takagi, Ryo Kurozumi

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

stop and reset the current simulation at any time. When
an engineer thinks that the execution trace is good for a
test case in regression testing, he/she can save it.

An engineer can start automated regression testing by
loading a test case and an EPNAT model to be tested.

4. Discussion and Future Work

In this paper, we have proposed a technique of simulation
and regression testing for EPNAT models, and then have
shown an early prototype tool to partially support it. In
the technique, the information about a current marking
(including current values of attributes), current values of
global variables, and current fireable transitions is
indicated for the simulation, and also the good execution
traces in the simulation are recorded as test cases for the
regression testing. When an EPNAT model is modified,
the test cases can be applied to it in order to reveal
regression failures.

When a failure that was caused in the earlier stage of
software development is found in the later stage
(typically, the processes of system testing and acceptance
testing), the cost to fix it generally tends to become higher.
Therefore, it is important to find and fix failures in the
earlier stage, and it is expected that our technique can be
applied to address this problem. However, our tool is
under development, and the functions to support our
technique are not completely implemented at present.
Also, the following matters need to be tackled in future
work in order to improve the technique:
• An engineer will often need to confirm that the set

of reachable states in an EPNAT model under
construction includes all the indispensable states to
satisfy given software requirements and also the set
does not include any invalid states. However, test
cases are manually created in our technique and tool,
and thus it will be difficult for most engineers to do
such task systematically at small cost. Model
checking7 may be useful to address this problem.

• After an engineer has made a modification on an
EPNAT model, he/she will often need to maintain
some existing test cases, that is, to update some
existing test cases so as to reflect the latest true
software specification. A technique and tool to
systematically support it should be constructed.

• Coverage criteria are useful to create good execution
traces in simulation and to select good test cases in
regression testing. Engineers will need guidelines for
the effective use of coverage criteria, and will need

a tool to automatically suggest execution traces and
test cases according to coverage criteria.

Based on the above, we will develop the tool to
support our extended technique, and apply it to pilot
projects in order to evaluate its effectiveness.

Acknowledgements

This work was supported by JSPS KAKENHI Grant
Number JP17K00103.

References

1. T. Takagi and R. Kurozumi, Software Modeling
Technique and its Prototype Tool for Behavior of Multiple
Objects Using Extended Place/Transition Nets with
Attributed Tokens, Journal of Robotics, Networking and
Artificial Life, Vol.7, No.3, pp.194-198, Dec. 2020.

2. J.A. Whittaker, J. Arbon and J. Carollo, How Google Tests
Software, Addison-Wesley Professional, 2012.

3. T. Takagi, R. Kurozumi and T. Katayama, State Transition
Tuple Coverage Criterion for Extended Place/Transition
Net-Based Testing, Proceedings of Pacific Rim
International Symposium on Dependable Computing,
pp.29-30, Dec. 2019.

4. T. Takagi, N. Oyaizu and Z. Furukawa, Concurrent N-
switch Coverage Criterion for Generating Test Cases from
Place/Transition Nets, Proceedings of 9th International
Conference on Computer and Information Science,
pp.782-787, Aug. 2010.

5. J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat and M.
Verhoef, Validated Designs for Object-Oriented Systems,
Springer-Verlag London, 2005.

6. B. Beizer, Software Testing Techniques, Van Nostrand
Reinhold, 2nd edition, 1990.

7. E.M. Clarke Jr., O. Grumberg and D. Peled, Model
Checking, MIT Press, 1999.

Fig. 3. Screen shot of an early prototype tool (EPNAT simulator).

339

