
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Burrows-Wheeler transform acceleration based on CUDA

Chang Sheng, Fengzhi Dai*
Tianjin University of Science and Technology, Tianjin, China

E-mail: * daifz@tust.edu.cn

www.tust.edu.cn

Abstract

Burrows-Wheeler transform (BWT) is a commonly used transform in compression or text comparison. For example,
in bzip2, BWT is used to preprocess the original data, then the same characters in the original data are close to each
other, which improves the compression rate. Because the prefix tree of the original string can be easily obtained
from the result of the BWT, BWT is also applied to the search and comparison of strings. For instance, the
comparison of DNA sequences uses the BWT algorithm. However, BWT is not a fast algorithm, only tens of
megabytes per second on CPU. This article uses the GPU to sort the original string by the base of the 4-byte key
size radix sort. After radix sort, the part with insufficient length is sorted again to complete the BWT algorithm.

Keywords: BWT, acceleration, CUDA, GPU

1. Introduction

Burrows-Wheeler transform (BWT) is a data
compression algorithm proposed by Burrows and
Wheeler in 1994 1. It can be used before other
compression algorithms, such as MTF, Huffman, and
RLE, so that these zero-order entropy codes can achieve
the effect of high-order entropy coding. Therefore, it can
replace the LZ77 sliding window search algorithm before
the general compression algorithm. Moreover, thanks to
the restoration method of BWT transformation, we can
obtain the prefix tree of the original string through the
result of BWT transformation. Through the prefix tree,
the search for the string may be completed faster, and the
result of the BWT transformation takes up less space than
using the prefix tree. Therefore, BWT transformation is
used in bzip2 compression and DNA sequence alignment.
 For the implementation of the BWT algorithm, first,
add a terminator to the original string, so that the starting
position can be found when restoring. For example, for
the string "aabcg", add the terminating character '#' to get

a string of length 6 "aabcg#", and then perform a circular
shift to get 6 strings, then sort, and the last column of the
sorted result is the transformed result "g#aabc", as shown
in Table 1.

Table 1. BWT Algorithm
Rotate

left Sort first
column

last
column

aabcg# #aabcg # g
abcg#a aabcg# a #
bcg#aa abcg#a a a
cg#aab bcg#aa b a
g#aabc cg#aab c b
#aabcg g#aabc g c

 The last column is the result. The method of restoring
the string is to start with the character '#' in the first
column of Table 1, get the first 'g' in the last column, then
find the first 'g' in the first column, and repeat this
operation to get '#gcbaa', then reverse the arrangement to
get the original string.
 In the process of performing the BWT algorithm, we
can find that the original algorithm needs to occupy

596

http://www.tust.edu.cn/

Chang Sheng, Fengzhi Dai

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

O(m*m) space. Of course, this can be turned into O(m)
space through the position index. So choosing the
suitable string sorting algorithm becomes the main point
of acceleration. If a complete string comparison is
performed each time, memory access will be
discontinuous, so using 4 bytes as a key, and indexing the
corresponding value, sorting the key-value pairs can
increase the continuity of memory access. For the sorting
algorithm, it is realized by selecting the radix sorting that
is convenient to run on the GPU. Experiments show that
this method is effective.

2. Main ideas

Fig.1 is the Implementation process.

Fig.1 Implementation process

In order to complete the BWT algorithm, first, use 100M
data to generate 4-byte keys and values, Then use the
radix sort to sort the generated key-value pairs according
to the key. For the case where the key values are the same
because of the limited length, re-sort them, and finally

use the value corresponding to the sorted key to generate
the BWT result.

3. Implementation details

For the above process, the specific implementation can be
divided into the following 4 parts.

3.1. Generate key-value pairs

This saves space and is a step towards shifting to
key-value pair sorting. The key is the first 4 bytes of
m*m strings, and the value is the number of rows
corresponding to m*m strings. So 3 bytes from the
current position, plus the current byte, a total of 4 bytes
are keys, and the data from 0 to 100000000-1 is the
value.
 It is worth noting that the memory access must be
performed in a continuous manner as shown in Fig.2,
otherwise the performance will be greatly reduced. The
subsequent algorithms in this article use this method
when this access is optional.

Fig.2 Memory access method

3.2. Key-value pairs radix sort

By sorting the key-value pairs, most of the data can be in
the correct order. For the sorting algorithm, radix sorting
is selected here. Because the radix sort has a time
complexity of O(nlogn) when the radix size is determined,
and occupies 2n space, the algorithm is simple and
regular, suitable for implementation by GPU, and has
been implemented on GPU.

3.3. Same key recognition and reorder

Because the 4-byte fixed-length mode is used, and the
actual string length is 100M, it needs to be compared
again when the 4-byte keys are equal. This program
compares all keys. If they are not equal, the value in the
key-value pair is used to index the original data, and the
comparison is performed until the result is different. This

Initial array

Key Value

Sorted key-value pairs

4-byte radix sort

Find the same key
and reorder

Index value after sorting

BWT result

597

Burrows-Wheeler transform acceleration based

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

algorithm sorts multiple data with smaller length at the
same time.
 Because the comparison of indefinite length is
performed, the comparison sorting algorithm is used for
the reordering part. Merge sort is considered for parallel
sorting of the remaining data. However, because the
merge sort has low parallelism in the final stage, and
some data has a large length, the bitonic sort algorithm is
used for the part with a length greater than 2000. It has
high parallelism and is suitable for sorting small-length
data.

3.4. Generate BWT results

After the previous step, the sorted keys have been
obtained. According to the corresponding value, the
sorted result of the original m*m strings can be obtained.
By formula (1), the result corresponding to the last
column of Table 1 can be obtained.

L)%1-L1pos(2pos += (1)

In formula (1), pos2 is the result of the last column,
pos1 is the index value obtained after sorting, L is the
length of the original data, % is the same as that
represented in the C language for taking the remainder.
 In this way, the BWT results can be obtained. Because
the data is sorted, the access to the original string
becomes random access, so this step consumes time.

4. Experimental results

In order to determine the difference in performance of
various graphics cards, the sensitivity to data and the
internal performance of the algorithm, the following
experiment was carried out.

4.1. Performance on various graphics cards

In order to obtain the performance of this algorithm on
different graphics cards and data volumes, the following
tests were performed with random data. The result is
shown in Fig.3.
 It can be seen that when the amount of data is small,
the concurrency of the GPU is not enough and the speed
is reduced. As the amount of data increases, the speed
begins to rise, and for random data, as the amount of data
further rises, the speed does not decrease.

Fig.3 Performance on different graphics cards

4.2. Sensitivity to data

In order to obtain the running performance on different
data, tests were carried out. The test data includes random
data, win7 installation iso format files, molecular
dynamics simulation trajectory trr format files, and
human genome fasta format files. With 100MByte data
volume, the data of Table 2 was obtained on 2080ti.

Table 2. Running performance
File type Speed

Random data 1.01GB/s
Win7 iso 0.998GB/s

Trajectory trr 0.549GB/s
Genome fasta 0.202GB/s

 For genetic data, because there are only 4 kinds of
characters per byte, 16 characters are used to generate a
4-byte key, which has an impact on speed.
 When there is a certain repetition in the data, this
algorithm has appropriate sensitivity to the data. It will
increase the amount of reordered data and cause too
many character comparisons during comparison. Using
Manber-Myers multiplication algorithm 2 can reduce data
sensitivity, but will increase the amount of calculation for
less repeated data.

4.3. Algorithm internal performance

In order to understand the time consumption of each part
of the algorithm, a test was performed on 2080ti using
random data with a data volume of 100MByte. The
results are shown in Table 3.

598

Chang Sheng, Fengzhi Dai

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021

Table 3. Time consumption
Stage Time Speed

Generate key-value pairs 1.9ms 52.6GB/s
Key-value pairs radix sort 62ms 1.61GB/s
 Recognition and reorder 5.67ms 17.6GB/s

Generate BWT results 29ms 3.44GB/s

 Time is mainly used to sort the key-value pairs, which
is an important step in ordering the data. It also takes a
certain amount of time to generate the result, because the
access to the original string becomes random after the
sort. In the reordering phase, because the amount of
reordered data on random data is less, and the length of
the reordering comparison is similar, it does not take
much time.

5. Conclusion

The algorithm sorts 4-byte key-value pairs by radix sort.
It can sort most of the data with less repetitiveness, and
then use the reordering method to sort the remaining data.
Great performance improvement for data with low
repeatability. For data with high repeatability and uneven
distribution, the speed is higher than the CPU. Using the
multiplication algorithm can reduce data sensitivity 3, and
this algorithm has more advantages for data with low
repeatability.

References

1. Michael Burrows, David J. Wheeler. A block-sorting
lossless data compression algorithm. Technical report,
Digital SRC Research Report, 1994

2. Udi Manber, Gene Myers. Suffix Arrays: A New Method
for On-Line String Searches. Siam Journal on Computing,
1993, 22(5): pp.935-948.

3. Kartsev, Petr F. High performance OpenCL realization of
Burrows-Wheeler transform on GPU. International
Workshop on OpenCL, Oxford, ENGLAND, May. 2018,
pp. 83-84.

599

