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Abstract 

When designing a complex product system, must be considered the optimal function distribution between the 
controller and the plant. This makes it possible to design a plant that is easy to control for fixed PID control, and the 
performance of the entire system can achieve the desired performance. Here, the evaluation function of the system is 
calculated from the output error and the input difference value. Then, the optimum design parameters are calculated 
by using Bayesian optimization. 

Keywords: Optimal Allocation of Function, Model-Based Development, Bayesian Optimization, Evaluation 
Function,. 

1. Introduction 

Most product systems consist of a combination of 
multiple subsystems. Appropriate setting and design of 
operating goals (functional goals) of these subsystems 
are important to achieve and maintain the target 
performance of the system. In addition, the performance 
required by users for products is becoming more diverse 
and complex year by year. It is necessary to efficiently 
design a combination of subsystems to satisfy these 
required performances in a short period of time and at a 
low cost. In recent years, model-based development 
(MBD) has been attracting attention in the industrial 
world, and its introduction is being active.  In the MBD 
process, entire subsystems are modeled as simulation 
models and are connected to each other on the simulation 
environment (such as MATLAB/Simulink). Moreover, a 

 
 
 

user can evaluate the subsystem’s performance and easily 
improve their design without any prototyping. 
Meanwhile, the actuators of many subsystems are 
becoming electrified. Therefore, a feedback control 
system including controllers represented by by-wire 
technology is used in various situations. However, in 
many situations of control system design, plant design is 
completed in advance. In the conditions of this plant 
characteristic, the structure and parameters of the 
controller are often adjusted to satisfy the desired control 
performance. In particular, when the control target 
includes high-order components, strong non-linearity, 
and large dead time, it is difficult to achieve high control 
performance with a low-order controller such as a PID  
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 controller. On the other hand, if a high-order controller 
is introduced, the adjustment of control parameters 
becomes complicated, and the uncertainty of the system 
may impair the stability of the control loop. Therefore, in 
subsystem design, a plant and a controller are required to 
be optimized at the same time for the functional goals 
determined upstream design process. Based on the 
background, this study considers the simultaneous 
optimum design of the controller and the plant. 

2. Simultaneous Optimal Design of Controller 
and Plant in MBD 

2.1. V-shaped development process 

Figure 1 shows the product development process, V-
shaped development process, in MBD. The V-shaped 
development process (V-model) is divided into the 
model-in-the-loop simulation (MILS) which is a design 
area using a model and the hardware-in-the-loop 
simulation (HILS) which is a verification area that uses 
hardware and a model simultaneously. Since this 
research is mainly related to the design method, only 
MILS is be explained. Firstly, the necessary functions for 
a designed product system and specifications will be 
examined based on the results of market research. Next, 
the product system is decomposed into several 
subsystems, and the functions that these subsystems 
should satisfy are examined using 1D simulation 
technology. Furthermore, the parts (detailed design), that 
compose a subsystem is designed so that it operates in the 
same way as the functional model determined in the 
upstream design process. In this process, a detailed 
design including the shape of parts is performed using 3D 
simulation technology. 

2.2. Optimal allocation of plant and controller 
functions 

 When designing a feedback system composed of a plant 
and a controller, the controller is usually designed from 
the state in which the plant has already been designed. 

However, when designing a control system, there are 
input restrictions and non-linearities in the designed plant, 
and these characteristics appear as constraints when 
designing the controller. Therefore, it is often the case 
that the desired control performance cannot be obtained 
with low-order controllers such as PID controllers that 
are usually introduced in systems. However, if the spread 
of MBD makes it possible to allocate the optimum 
functions of the plant and controller in advance, the 
performance of the entire system will be closer to the 
desired performance by designing a plant that is easy to 
control for fixed PID controller. Therefore, this study, 
considers the optimum allocation method of plant and 
controller functions for the system function in the design 
phase. In the subsystem, to reach a given functional goal 
is the most important. Where, it is assumed that the 
functional goal can be described as the dynamic 
input/output relationship, that is the reference model1. 
The error between the output of the subsystem 
corresponding to a certain input scenario and the output 
of the reference model is evaluated as follows. 

𝐼𝐼𝑒𝑒 =
1
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However, 𝑁𝑁 represents the number of data acquired in 
the simulation evaluation interval. In Eq. (1), the 
Gaussian kernel is used for the output error. As a result, 
the value of Eq. (1) is normalized between 0 to 1 and the 
permissible ratio to the error can be adjusted by 𝜎𝜎𝑒𝑒2 . 
Moreover, in the controller design, it is desirable to 
impose some restrictions on the controller output from 
the viewpoint of actuator protection and noise robustness. 
Here, the following evaluation function is designed for 
the input difference value Δ𝑢𝑢(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) − 𝑢𝑢(𝑡𝑡 − 1).  

𝐼𝐼𝑒𝑒 =
1
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(Δ𝑢𝑢(𝑘𝑘))2

2𝜎𝜎Δ𝑢𝑢2
� � 

𝑁𝑁

𝑘𝑘=1
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By using the Gaussian kernel as in Eq. (2), the evaluation 
value for the input difference value is normalized, and a 
certain permissible ratio is given as 𝜎𝜎Δu. For Eqs. (1) and 
(2), the evaluation function for optimizing the entire 
subsystem is defined by the following equation. 

𝐼𝐼 = 𝜆𝜆𝐼𝐼𝑒𝑒 + (1 − 𝜆𝜆)𝐼𝐼Δ𝑢𝑢 . (3) 
However, 𝜆𝜆(0 ≤ 𝜆𝜆 ≤ 1) is an adjustment parameter. 
Based on the above equation, if the design parameter 
vector composed of control parameters and plant 
parameters is 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2,⋯ ,𝜃𝜃𝑛𝑛, )𝑇𝑇 , the optimization 
problem is formulated by the following equation. 

𝜽𝜽∗ = arg min
𝛉𝛉 

 �𝐼𝐼(𝜽𝜽)� . (4) 

The next chapter explains the design parameter 
optimization method based on Bayesian optimization. 

 
Fig. 1.  V-shaped development process. 
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3. Bayesian Optimization 

Bayesian optimization2,3 can be divided into the 
regression process based on Gaussian process regression 
using obtained input/output data and a process for 
determining the next search point by calculating an 
acquisition function. 

3.1. Gaussian process regression 

In the Gaussian process regression, the mean and 
variance of the system output are estimated. First, this 
calculation method is explained. Let the input 𝑥𝑥 and the 
output 𝑦𝑦 are expressed by Eqs. (5) and (6). 

𝒙𝒙 = (𝜽𝜽1,𝜽𝜽2,⋯ ,𝜽𝜽𝑁𝑁)𝑇𝑇 . (5) 
𝒚𝒚 = (𝐼𝐼1, 𝐼𝐼2,⋯ , 𝐼𝐼𝑁𝑁)𝑇𝑇 . (6) 

Where, 𝑁𝑁 is the number of data. 
The feature vector of 𝒙𝒙 is given as Eq. (7). 

𝝓𝝓 = (𝜙𝜙0(𝒙𝒙),𝜙𝜙1(𝒙𝒙),⋯ ,𝜙𝜙𝐻𝐻(𝒙𝒙))𝑇𝑇 . (7) 
If the weights vector is described as 𝒘𝒘 =
(𝑤𝑤0,𝑤𝑤1,⋯ ,𝑤𝑤𝐻𝐻)𝑇𝑇, the linear regression model becomes 
Eq. (8). 

�
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𝒚𝒚� = Φ𝒘𝒘 . (9) 
However,  𝒚𝒚� is the predicted value of the output y and is 
shown by Eq. (10). 

𝒚𝒚� = (𝑦𝑦�1,𝑦𝑦�2,⋯ ,𝑦𝑦�𝑁𝑁)𝑇𝑇 . (10) 
In addition, Φ is called a design matrix and becomes Eq. 
(11). 

Φ = �

𝜙𝜙0(𝒙𝒙1) 𝜙𝜙1(𝒙𝒙1) ⋯ 𝜙𝜙𝐻𝐻(𝒙𝒙1)
𝜙𝜙0(𝒙𝒙2) 𝜙𝜙1(𝒙𝒙2) ⋯ 𝜙𝜙𝐻𝐻(𝒙𝒙2)
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� . (11) 

Where, by assuming 𝒚𝒚 = 𝒚𝒚�, Eq. (9) can be obtained. 
𝒚𝒚 = Φ𝒘𝒘 . (12) 

Here, if a weights vector 𝒘𝒘  is generated from the 
Gaussian distribution 𝒘𝒘~𝑁𝑁(𝟎𝟎, 𝜆𝜆2𝑰𝑰) , 𝒚𝒚  also follows a 
Gaussian distribution, then the mean E [y] and the 
covariance matrix K becomes as follows. 

𝐸𝐸[𝒚𝒚] = 𝐸𝐸[Φ𝒘𝒘] = Φ𝐸𝐸[𝒘𝒘] = 0 . (13) 
𝑲𝑲 = 𝐸𝐸[𝒚𝒚𝒚𝒚𝑇𝑇] − 𝐸𝐸[𝒚𝒚]𝐸𝐸[𝒚𝒚] 

= 𝐸𝐸[(Φ𝒘𝒘)(Φ𝒘𝒘)𝑇𝑇] 
= Φ𝐸𝐸[𝒘𝒘𝒘𝒘𝑇𝑇]Φ𝑇𝑇 
= 𝜆𝜆2ΦΦ𝑇𝑇 . (14) 

Therefore, the distribution of y is a multivariate Gaussian 
distribution shown in Eq. (12). 

𝒚𝒚~𝑁𝑁(𝟎𝟎, 𝜆𝜆2ΦΦ𝑇𝑇). (15) 

The function that finds the value of the 𝑲𝑲 element 𝐾𝐾𝑖𝑖𝑖𝑖  is 
called a kernel function. Kernel functions represent the 
similarity of inputs. There are several types, and the 
Gaussian kernel is widely used. The Gaussian kernel is 
shown in Eq. (13). 

𝑘𝑘�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑖𝑖� = 𝜃𝜃1 exp�−
�𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑖𝑖�

2

𝜃𝜃2
� . (16) 

‖∙‖  indicates the Euclidean norm of the vector. In 
addition, 𝜃𝜃1  and 𝜃𝜃2  are parameters that determine the 
properties of the kernel function. Here, consider finding 
the prediction point 𝑦𝑦∗ for an arbitrary vector 𝑥𝑥∗. First, 
using the output data vector in Eq. (6) and the predicted 
output 𝑦𝑦∗, a new vector 𝒚𝒚𝑛𝑛𝑒𝑒𝑛𝑛 is defined as follows. 

𝒚𝒚𝑛𝑛𝑒𝑒𝑛𝑛 = (𝒚𝒚𝑇𝑇 ,𝑦𝑦∗)𝑇𝑇 . (17) 
If the covariance matrix 𝑲𝑲𝑛𝑛𝑒𝑒𝑛𝑛 is calculated from 𝒚𝒚𝑛𝑛𝑒𝑒𝑛𝑛, 𝒙𝒙, 
and 𝒙𝒙∗, then the following relationship is hold. 

𝒚𝒚𝑛𝑛𝑒𝑒𝑛𝑛~𝑁𝑁(𝟎𝟎,𝑲𝑲𝑛𝑛𝑒𝑒𝑛𝑛). (18) 
 Here, the covariance matrix 𝑲𝑲𝑛𝑛𝑒𝑒𝑛𝑛 is expressed by the 
following equation. 

𝑲𝑲𝑛𝑛𝑒𝑒𝑛𝑛 = �
𝑲𝑲 𝒌𝒌∗
𝒌𝒌∗𝑇𝑇 𝑘𝑘∗∗

�  . (19) 

𝒌𝒌∗ = �𝑘𝑘(𝒙𝒙∗,𝒙𝒙1), 𝑘𝑘(𝒙𝒙∗,𝒙𝒙2),⋯ , 𝑘𝑘(𝒙𝒙∗,𝒙𝒙𝑁𝑁)�𝑇𝑇 . (20) 
𝑘𝑘∗∗ = 𝑘𝑘(𝒙𝒙∗,𝒙𝒙∗). (21)  

From Eq. (18), the mean and variance of 𝒚𝒚∗  can be 
calculated by Eq. (23). 

𝑦𝑦∗~𝑁𝑁(𝜇𝜇,𝜎𝜎2).                                 (22) 
     ~𝑁𝑁(𝒌𝒌∗𝑇𝑇𝑲𝑲−1𝒚𝒚, 𝑘𝑘∗∗ − 𝒌𝒌∗𝑇𝑇𝑲𝑲𝒌𝒌∗). (23) 

From the above results, the mean 𝜇𝜇 and variance 𝜎𝜎2 of 
the unknown 𝒚𝒚∗ corresponding to arbitrary point 𝒙𝒙∗ can 
be derived. 

3.2. Acquisition function 

The acquisition function is an equation calculated using 
the mean 𝜇𝜇  and standard deviation 𝜎𝜎  obtained by 
Gaussian process regression. This function is used to 
determine the next point to search. There are several 
types of acquisition functions, in this study, the following 
Lower Confidence Bound (LCB) is introduced. 

𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜇𝜇 − �log𝑁𝑁
𝑁𝑁

𝜎𝜎 . (24) 

The LCB searches for a place with a large standard 
deviation, that is, an unknown region, as the number of 
data decreases. Also, as the number of data increases, the 
search proceeds based on the data. From the above, it is 
possible to search for the optimum value of the function 
obtained by Bayesian optimization globally and 
efficiently. 
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4. Numerical Example 

The effectiveness of the proposed design method is 
evaluated by  numerical example. Here, consider a 
control system consisting of a controller, actuator, and 
plant as shown in Fig. 2. 

 
Fig. 2 Feedback control system 

Here, 𝑓𝑓𝑠𝑠 (𝑢𝑢)  and 𝑊𝑊𝐴𝐴  are the characteristics of the 
actuator, and 𝑊𝑊𝑃𝑃  is the dynamic characteristics of the 
plants that make up the subsystem.   𝑓𝑓𝑠𝑠 (𝑢𝑢) is a function 
that expresses the input saturation of the actuator and is 
given by the following equation. 

𝑢𝑢2(𝑡𝑡) = �
𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛 , (𝑢𝑢1(𝑡𝑡) < 𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛)
𝑢𝑢1(𝑡𝑡), (𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑢𝑢1(𝑡𝑡) < 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 , (𝑢𝑢1(𝑡𝑡) ≥ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)

. (25) 

The transfer function of plant 1 (𝑊𝑊𝐴𝐴 ) is shown in the 
following equation. 

𝑊𝑊𝐴𝐴(𝑠𝑠) =
𝐾𝐾𝐴𝐴

1 + 𝑇𝑇𝐴𝐴𝑠𝑠
. (26) 

Here, 𝑇𝑇𝐴𝐴 is the time constant of the actuator, and 𝐾𝐾𝐴𝐴 is the 
maximum output of the actuator. The transfer function of 
plant 2 (𝑊𝑊𝑃𝑃) is shown in the following equation. 

𝑊𝑊𝑃𝑃 =
𝐾𝐾𝜔𝜔2

𝑠𝑠2 + 2𝜁𝜁𝜔𝜔𝑠𝑠 + 𝜔𝜔2 . (27) 

Where, 

𝐾𝐾 = 1
𝑘𝑘𝑃𝑃

, 𝜁𝜁 = 𝐷𝐷𝑃𝑃
2�𝑘𝑘𝑃𝑃𝑀𝑀𝑃𝑃

,𝜔𝜔 = �𝑘𝑘𝑃𝑃
𝑀𝑀𝑃𝑃

. (28) 

However, it is assumed that the system parameters 𝑀𝑀𝑃𝑃, 
𝑘𝑘𝑃𝑃 , and 𝐷𝐷𝑝𝑝  are all positive real numbers. In this 
simulation, 𝐾𝐾𝐴𝐴 , 𝑘𝑘𝑃𝑃 , and 𝐷𝐷𝑃𝑃  are the design parameters, 
and the other parameters are the fixed values shown in 
Table 1. In the controller design, the PID gains are 
determined based on the pole assignment controller 
design only using the model of plant 2. Here, the 
reference model expressing the desired function of the 
subsystem is given by the following equation.  

𝐺𝐺𝑚𝑚 = 1

�1+𝜎𝜎3𝑠𝑠�
3. (29) 

The parameter 𝜎𝜎 = 0.5 for the rise time was set in this 
case. The evaluation function uses Eq. (3), and Table 2 
shows the parameters used in the function design.  
 

Table 1. Plant parameters 
parameters value 
𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛  0 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 1 
𝑇𝑇𝐴𝐴 0.01 
𝑀𝑀𝑃𝑃 10 

Table 2. Evaluation function parameters 
parameters value 

𝜆𝜆 0.5 
𝜎𝜎𝑒𝑒 0.1 
𝜎𝜎Δu 0.01 

 

  
Fig. 3.  Control result using parameters (left-hand side: λ =

0.5, right-hand side: λ = 1.0). 
As a result of Bayesian optimization under the condition 
λ = 0.5, the optimum values became 𝐾𝐾𝐴𝐴 = 61, 𝑘𝑘𝑃𝑃 = 50,
𝐷𝐷𝑃𝑃 = 0.1. At this time, the control result is shown in Fig. 
3 (left-hand side). From the control result, it can be seen 
that the output 𝑦𝑦 generally follows the reference output 
𝑦𝑦𝑟𝑟 . If λ = 0.5  in the evaluation function, the optimum 
values are 𝐾𝐾𝐴𝐴 = 102, 𝑘𝑘𝑃𝑃 = 80, 𝐷𝐷𝑃𝑃 = 35  when 
Bayesian optimization is performed. At this time, the 
result of the simulation is shown in Fig. 3 (right-hand 
side). Compared with the result obtained by λ = 0.5, it 
seems that the output error is smaller. However, since it 
can be seen that the input fluctuates drastically, it can 
conclude that a system in which the fluctuation of the 
input is suppressed can be designed by adding 𝐼𝐼Δ𝑢𝑢 to the 
evaluation function. 

5. Conclusion 

This study proposes an optimal design method of a 
subsystem composed of a plant and a controller by using  
Bayesian Optimization. This paper defines a criterion for 
optimizing the plant parameters so that the plant is 
designed suitable for a controller. The effectiveness of 
the proposed design scheme is verified by a simulation 
example.  
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