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Abstract 

In this paper, nonlinear internal model controller based on local linear models, and its Application. The internal model 
control has a simple structure and has a high robustness for system uncertainties. However, there are few studies of 
internal model control schemes for nonlinear systems. On the other hand, many controlled systems have the 
nonlinearity. The effectiveness of the newly proposed control scheme is numerically evaluated on experiment 
examples in comparison with the conventional control methods for nonlinear systems. 
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1. Introduction

In recent years, with the development of computer 
technology, design methods for control systems with 
higher-order compensators have been considered with 
the aim of improving control performance [1]. In 
particular, it is difficult to obtain a desirable control 
response with a simple controller using fixed parameters 
because the characteristics of the system change 
significantly due to changes in the system with non-
linearity, operating conditions, and changes in the 
environment. 
On the other hand, a model-driven control method [2] has 
been proposed in which the controlled object is described 
by the most detailed mathematical formula and the model 
of the controlled object is incorporated into the control 
system. Internal model control (IMC) is one of the 
model-driven control methods [2,3]. IMC is 
characterized by a simple control system structure and 

high robust stability against uncertainty of the controlled 
object. However, there are few examples of applying 
IMC to nonlinear systems. For example, data-driven IMC 
that uses a database to extract data similar to the current 
data as a neighborhood and control it according to the 
required point. Systems have been proposed, but these 
methods require enormous amounts of time for 
computational processing [4]. 
By the way, the authors have previously proposed a 
method for calculating control parameters using the 
concept of the local linear model method [5]. In this 
method, multiple local linear models can be constructed 
for a nonlinear system, system parameters corresponding 
to each local linear model can be obtained, and weights 
can be applied to design a control system. For nonlinear 
systems. It is possible to control with fast calculation 
processing. 
Therefore, in this paper, as a method of designing an 
internal model for a nonlinear system, we propose a 
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method of designing a control system by individually 
calculating the system parameters corresponding to each 
local linear model and weighting them. In this method, 
the system parameters are determined for the local linear 
model divided into multiple parts, so it can be expected 
that more appropriate tuning can be performed for the 
nonlinear system. Since it is not necessary to build the 
database required by the data-driven IMC system, the 
time required for construction can be reduced. As a result, 
the load and processing time can be significantly reduced 
in terms of memory capacity and calculation time. 

2. IMC design using a local linear model 

In this paper, we construct a local linear model around 
the equilibrium point that differs depending on the 
characteristics of the static characteristics of the 
nonlinear model. Calculate the control parameters 
corresponding to each local linear model and obtain the 
estimated value of the system output. Then, the non-
linear control is realized by calculating the distance 
between the actual system output and the estimated value 
and adjusting the load of the system parameters 
according to the distance. Fig.1 shows the block diagram 
of the proposed control system. 

2.1. System description 

First, it is assumed that the system dealt with in this paper 
is given by the following equation. 

y(t) = f(φ(t − 1))                                                (1) 
where, y(t)  represents the system output and f(∙) 
represents the nonlinear function. In addition, φ(t − 1) 
represents the state (historical data) before the time t − 1 
of the system, and is called an information vector. The 
information vector φ(t − 1) is defined by the following 
equation. 

φ(t − 1) ≔ [y(t − 1), y(t − 2),⋯ , y(t − 𝑛𝑛𝑦𝑦)  
u(t − 1), u(𝑡𝑡 − 2),⋯ , u(t − 𝑛𝑛𝑢𝑢) ]  (2) 

Furthermore, u(t) is the control input, and 𝑛𝑛𝑦𝑦 and 𝑛𝑛𝑢𝑢 are 
the output and input orders, respectively. Now, suppose 
that the nonlinear system represented by Eq. (1) can be 
locally represented by a linear model like the following 
Eq. 

A(𝑧𝑧−1)y(t) = 𝑧𝑧−(𝑘𝑘𝑚𝑚+1)𝐵𝐵(𝑧𝑧−1)𝑢𝑢(𝑡𝑡)                       (3) 
where, 𝑧𝑧−1  represents a time-delayed operator that 
means 𝑧𝑧−1𝑦𝑦(𝑡𝑡) = 𝑦𝑦(𝑡𝑡 − 1) . In addition, 𝑘𝑘𝑚𝑚  represents 
the minimum estimate of wasted time. In many process 

systems represented by chemical processes, it is often 
impossible to clearly specify the dead time. Therefore, if 
the dead time is known, set 𝑘𝑘𝑚𝑚 to that value, and if the 
range of dead time is unknown, set 𝑘𝑘𝑚𝑚 = 0. 
In addition, A(𝑧𝑧−1)  and B(𝑧𝑧−1)  are given by the 
following equations. 

A(𝑧𝑧−1) = 1 + 𝑎𝑎1𝑧𝑧−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑦𝑦𝑧𝑧
−𝑛𝑛𝑦𝑦                       (4) 

B(𝑧𝑧−1) = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯+ 𝑏𝑏𝑛𝑛𝑢𝑢𝑧𝑧
−𝑛𝑛𝑢𝑢                    (5) 

where, if the dead time is unknown or ambiguous, the 
insufficient dead time information is supplemented by 
securing the order of B(𝑧𝑧−1) in 𝑛𝑛𝑢𝑢 dimensions. 

2.2. Designing an internal model controller using 
a local linear model 

In this paper, we consider the control law (IMC) of the 
following Eq. 

u(t) = Q(𝑧𝑧−1)𝑒𝑒(𝑡𝑡)                                                    (6) 
Q(𝑧𝑧−1) = 𝐴𝐴(𝑧𝑧−1)

𝐵𝐵(1)
� 1−𝜆𝜆
1−𝜆𝜆𝑧𝑧−1

�
𝑛𝑛
                                       (7) 

where, λ is the design parameter of the filter used in the 
range of 0 ≤ λ < 1, and n is the order of the filter. In 
addition, by using B(1) , even if B(𝑧𝑧−1)  contains an 
unstable zero point (non-minimum phase system), it can 
be dealt with because pole-zero cancellation is avoided. 
In addition, e(t)  is a control error signal and can be 
defined as follows with r(t) as the target value. 

e(t) ≔ r(t) − {y(t) − 𝑦𝑦�(t)}                                              (8) 
where, 𝑦𝑦�(𝑡𝑡) is the internal model output and is shown by 
the following Eq. 
    𝑦𝑦�(𝑡𝑡) = −𝐴𝐴(𝑧𝑧−1)𝑦𝑦(𝑡𝑡) + 𝑧𝑧−(𝑘𝑘𝑚𝑚+1)𝐵𝐵(𝑧𝑧−1)𝑢𝑢(𝑡𝑡)          (9) 
Since many real systems have non-linearity, it is difficult 
to always obtain good control results when the system 
parameters are fixed. Therefore, in this method, the 
system parameters included in equations (4) and (5) are 

 

Fig. 1. Block diagram of the proposed method 

110



 Nonlinear Internal Model Controller 
 

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 
 

self-adjusted according to the characteristics of the 
system based on the local linear model, so they are 
replaced as follows. 

A�(𝑧𝑧−1: 𝑡𝑡) = 1 + 𝑎𝑎�1(𝑡𝑡)𝑧𝑧−1 + ⋯+ 𝑎𝑎�𝑛𝑛𝑦𝑦(𝑡𝑡)𝑧𝑧−𝑛𝑛𝑦𝑦       (10) 
B�(𝑧𝑧−1: 𝑡𝑡) = 𝑏𝑏�0(𝑡𝑡) + 𝑏𝑏�1(𝑡𝑡)𝑧𝑧−1 + ⋯+ 𝑏𝑏�𝑛𝑛𝑢𝑢(𝑡𝑡)𝑧𝑧−𝑛𝑛𝑢𝑢(11) 

where, A�(𝑧𝑧−1: 𝑡𝑡)  and B�(𝑧𝑧−1: 𝑡𝑡)  represent the control 
target at time t, and the above assumptions are inherited. 
Also, 𝑛𝑛𝑦𝑦  is the order of the output. Along with this, 
equations (7) and (9) are described as the following Eq. 

Q(𝑧𝑧−1: 𝑡𝑡) = 𝐴𝐴�(𝑧𝑧−1:𝑡𝑡)
𝐵𝐵�(1:𝑡𝑡)

� 1−𝜆𝜆
1−𝜆𝜆𝑧𝑧−1

�
𝑛𝑛                            (12) 

𝑦𝑦�(𝑡𝑡) = −𝐴𝐴(𝑧𝑧−1: 𝑡𝑡)𝑦𝑦(𝑡𝑡) +
                        𝑧𝑧−(𝑘𝑘𝑚𝑚+1)𝐵𝐵(𝑧𝑧−1: 𝑡𝑡)𝑢𝑢(𝑡𝑡)                          (13) 
After the above preparations, design an internal model 
controller using a local linear model. The specific 
algorithm is summarized below. 
 
[STEP1] Construction of multiple linear models 
For the nonlinear model, multiple linear models are 
constructed, the system is identified by the collective 
least squares method, and the parameters of A(𝑧𝑧−1) and 
B(𝑧𝑧−1)  included in the linear model of the following 
equation are estimated. 
 A𝑖𝑖(𝑧𝑧−1)y(t) = 𝑧𝑧−(𝑘𝑘𝑚𝑚+1)𝐵𝐵𝑖𝑖(𝑧𝑧−1)𝑢𝑢(𝑡𝑡) 

(i = 1,2,⋯ , N)  (14) 
where, N represents the number of divisions of the local 
linear model, and i = 1,2,⋯ , N or less Unless otherwise 
specified, i takes these values. In addition, A𝑖𝑖(𝑧𝑧−1) and 
B𝑖𝑖(𝑧𝑧−1) are given by the following equations. 

A𝑖𝑖(𝑧𝑧−1) = 1 + 𝑎𝑎𝑖𝑖,1𝑧𝑧−1 + ⋯+ 𝑎𝑎𝑖𝑖,𝑛𝑛𝑦𝑦𝑧𝑧
−𝑛𝑛𝑦𝑦               (15) 

B𝑖𝑖(𝑧𝑧−1) = 𝑏𝑏𝑖𝑖,0, + 𝑏𝑏𝑖𝑖,1𝑧𝑧−1 + ⋯+ 𝑏𝑏𝑖𝑖,𝑛𝑛𝑢𝑢𝑧𝑧
−𝑛𝑛𝑢𝑢         (16) 

 
[STEP2] Weight calculation 
Next, for each local linear data calculated in [STEP1], the 
estimation error 𝜖𝜖𝑖𝑖(𝑡𝑡) is calculated for each model, and 
the weight 𝜔𝜔𝑖𝑖  is calculated based on this. 𝜖𝜖𝑖𝑖(𝑡𝑡)  is the 
error between the system output value y(t)  and the 
estimated output value 𝑦𝑦�𝑖𝑖(𝑡𝑡) of each linear model. Here, 
𝑦𝑦�𝑖𝑖(𝑡𝑡) is calculated by the following equation based on 
equation (14). 

𝑦𝑦�𝑖𝑖(t) = −𝐴𝐴𝑖𝑖(𝑧𝑧−1)𝑦𝑦(𝑡𝑡) + 𝑧𝑧−(𝑘𝑘𝑚𝑚+1)𝐵𝐵𝑖𝑖(𝑧𝑧−1)𝑢𝑢(𝑡𝑡)  (17) 
where, 𝐴𝐴𝑖𝑖(𝑧𝑧−1) and 𝐵𝐵𝑖𝑖(𝑧𝑧−1) use the system parameters 
of each linear model estimated in [STEP1]. 

𝜖𝜖𝑖𝑖(𝑡𝑡) = |𝑦𝑦(𝑡𝑡) − 𝑦𝑦�𝑖𝑖(𝑡𝑡)|                                               (18) 

𝜔𝜔𝑖𝑖(𝑡𝑡) =
1
𝜖𝜖𝑖𝑖(𝑡𝑡)�

∑ 1
𝜖𝜖𝑖𝑖(𝑡𝑡)�𝑁𝑁

𝑖𝑖=1

                                                         (19) 

Furthermore, 𝜔𝜔𝑖𝑖(𝑡𝑡) is the weight corresponding to the 
selected i-th information vector. The smaller the 
difference between the output value of the actual system 
and each linear model, the larger this weight becomes. 
Note that the following equation is satisfied when 𝜔𝜔𝑖𝑖(𝑡𝑡) 
is calculated based on equation (19). 

∑ 𝜔𝜔𝑖𝑖(𝑡𝑡) = 1𝑁𝑁
𝑖𝑖=1

                                                             (20) 
 
[STEP3] Determining system parameters 
Using the weights obtained in [STEP2] and𝐴𝐴𝑖𝑖(𝑧𝑧−1) and 
𝐵𝐵𝑖𝑖(𝑧𝑧−1) in Eqs. (15) and (16), the system parameters are 
calculated by the following equation. 

𝐴̂𝐴(𝑧𝑧−1: 𝑡𝑡) = ∑ 𝜔𝜔𝑖𝑖𝐴𝐴𝑖𝑖(𝑧𝑧−1)𝑁𝑁
𝑖𝑖=1

                                        (21) 
𝐵𝐵�(𝑧𝑧−1: 𝑡𝑡) = ∑ 𝜔𝜔𝑖𝑖𝐵𝐵𝑖𝑖(𝑧𝑧−1)𝑁𝑁

𝑖𝑖=1
                                        (22) 

With this system parameter, equations (10) and (11) are 
updated to obtain the output 𝑦𝑦�(𝑡𝑡)  of the local linear 
model. 

3. Experimental example 

The effectiveness of the proposed method will be 
examined through application to the thermal process 
system shown in Fig.2. This system uses an incandescent 
light bulb (40W) as the control target, and controls the 
surface temperature of the light bulb by changing the 
voltage applied to the light bulb by controlling the Joule 
heat of the filament. A heat transfer pair (R52-CA10AE) 
sensor is attached to the top of the light bulb. Also, 
measure the temperature of the light bulb with a 
thermocouple. Furthermore, the temperature of the 
thermocouple is converted into a voltage by the 
thermocouple conversion IC, and after A/D conversion, 

 

Fig. 2. Process system 

111



Shinichi Imai 

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 

the data is output to the computer. The control input is 
calculated using the output data. 
A PWM signal with a duty ratio according to the control 
input is output through D/A conversion, and a current 
flows through the heater by a solid state relay (SSR). 
Therefore, the control input u(t) in this experiment is the 
duty ratio (0 to 100%) of the PWM signal given to the 
SSR, and the control output y(t) is the temperature of the 
surface of the light bulb. 
First, the target value r(t) is given as follows. 

r(t) = �

50(0 ≤ 𝑡𝑡 < 50)     
70(50 ≤ 𝑡𝑡 < 100)

100(100 ≤ 𝑡𝑡 < 150)
130(150 ≤ 𝑡𝑡 < 200)

       (23) 

Next, a local linear model is constructed in the control 
input range shown below. The number of divisions was 
N=2. 

� 0 ≤ 𝑢𝑢1 < 30
20 ≤ 𝑢𝑢2 < 100                                                      (24) 

Here, the input / output data in the range of u is saved as 
the initial database. In Eq. (24), there is a place where the 
area of u overlaps, but this avoids that a good response 
cannot be obtained by selecting the database when the 
request point is selected near the division of each 
database. It is provided for this purpose. The values of 
various design parameters included in the proposed 
method are 𝑛𝑛𝑦𝑦 = 2, 𝑛𝑛𝑦𝑦 = 2, and 𝑘𝑘𝑚𝑚 = 0. Furthermore, 
the parameters of IMC are λ = 0.5 and n = 1. Here, λ 
was designed to have the desired rising characteristics. 
First, for comparison with the conventional method, the 
fixed PID control method widely used in the industry is 
applied. However, for the PID parameter, the value 
calculated based on the CHR method is used. Its PID 
parameters are shown below. 
𝐾𝐾𝑃𝑃 = 3.66,𝐾𝐾𝐼𝐼 = 0.38,𝐾𝐾𝐷𝐷 = 5.98                      (25) 

First, Fig.3 shows the control results of the fixed PID 
method and the control results of the proposed method. 
In addition, Fig.4 shows the temporal change of the 
weight by the proposed method in this case. From the 
results in Fig.3 and Fig.4, it can be seen that the weight 
of the proposed method changes according to the 
characteristics of the system, and the responsiveness is 
greatly improved. 

4. Conclusion 

In this paper, we proposed a new design method for an 
IMC system that constructs multiple local linear models 
for a nonlinear system and adjusts the system parameters 
corresponding to them. As a result, it was verified 
through experiments that the system parameters were 

adjusted appropriately according to the characteristics of 
the system and good control results could be obtained. In 
the future, we plan to study the method of dividing the 
local linear model of this method. 
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Fig. 3. Experimental result 

 

 

 

 

 

 

 

Fig. 4. Change in weight 
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