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Abstract 

There are only a few small-scale benchmark datasets of lung sounds that are annotated for the training of machine 
learning. Therefore, we aim to build an anomaly detection system that only uses normal data that can be obtained 
more than abnormal data. We propose an algorithm that improves the Deep Autoencoding Gaussian Mixture Model 
(DAGMM), where various types of neural networks are applied to DAGMM as the compression networks. 
Experimental results show that the proposed methods obtain effective classification performance. 

Keywords: lung sounds, deep learning, anomaly detection, DAGMM 

1. Introduction 

In recent years, deep learning algorithms based on large 
amounts of data have been proposed and applied in 
various fields1. In the field of image recognition, in 
particular, various applications have been made using 
convolutional neural networks (CNNs). Because of its 
availability, CNNs have been applied to the medical field 
where high accuracy is required. 
For example, various approaches have been developed 
for medical images, such as feature extraction specific to 
a lesion or 3D modeling of an organ. Most of the research 

on computer-aided diagnosis using deep learning has 
been attempted for image diagnosis, which has greatly 
contributed to improve the accuracy of medical image 
diagnosis such as lung diseases2 which are dealt with in 
this study. However, diagnosis with only images is not 
sufficient because, in addition to the limitations of 
qualitative diagnosis in imaging, there are multiple ways 
to diagnose lung diseases. In the diagnosis of lung 
diseases, the patient is interviewed and physically 
examined, and the condition of the disease is estimated 
to some extent, and respiratory function tests, image 
diagnosis, electrocardiography, and gait assessment are 

496



Ryosuke Wakamoto, Shingo Mabu, Shoji Kido, and Takashi Kuremoto 
 

© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 

performed3. Because of this, the burden on the physicians 
making the diagnosis is heavy, requiring precise 
treatment and enough experiences. 
As mentioned above, because doctors need to conduct 
various tests for diagnosis, it is necessary to develop 
diagnostic support techniques for not only visual 
information such as images, but also for other senses such 
as hearing. Therefore, we consider applying deep 
learning-based speech recognition to auscultation which 
is one of the diagnostic methods for lung diseases. If we 
can construct a system for discriminating sounds, we can 
improve the accuracy of diagnosis by combining it with 
other examination results such as imaging. 
Although deep learning requires a large amount of sound 
data to learn the features of lung sounds, there are few 
small benchmark datasets with annotation (class 
labeling), which is necessary for machine learning. In 
addition, it takes a great deal of effort and time for each 
medical facility to acquire a sufficient amount of sound 
data. When training is performed with a small amount of 
data, it may not obtain generalized performance because 
it is difficult to capture essential features that are 
important for the diagnosis due to the large individual 
differences of lung sounds. There have been some 
research related to lung sounds classification, such as the 
analysis using histogram statistics4 and the lung sounds 
classification using deep learning5, however, the number 
of data to generate classification models is limited in both 
methods. Therefore, this study focuses on normal data, 
which is easier to obtain than abnormal data, and 
constructs a system for detecting abnormalities of 
pulmonary auscultation sounds using deep learning with 
the aim of capturing generalized features even with small 
data. 
In this paper, we propose a deep learning algorithm for 
feature extraction of lung sounds that improves the Deep 
Autoencoding Gaussian Mixture Model (DAGMM)6, 
which is an anomaly detection algorithm capable of 
learning feature extraction and clustering at the same 
time. Specifically, it uses Mel-Frequency Cepstral 
Coefficients (MFCC)7 for the feature extraction and three 
types of networks (auto-encoders) based on: 1) CNN, 2) 
Long short term memory (LSTM), 3) Convolutional 
LSTM (C-LSTM) are applied to DAGMM as  
compression networks to design an algorithm for 
efficient feature extraction. C-LSTM has features of both 
CNN and LSTM, so it can consider the features of both 

peripheral and time series information. These three types 
of networks have been shown to be useful in 
discriminating lung sounds in previous studies, and since 
the standard Multi-Layer Perceptron (MLP) is used as a 
compression network in the conventional DAGMM, the 
above three networks are expected to show better 
performance in DAGMM. In our experiments, we 
compare the conventional DAGMM and the proposed 
methods, and better classification performance is 
obtained by improving the compression networks in 
DAGMM. 
The paper is organized as follows. Section 2 describes the 
related work and Section 3 presents the proposed method. 
Section 4 presents the experimental conditions and 
results, and Section 5 presents conclusions and future 
work. 

2. Related work 

There are two types of research related to sound and 
speech: speech analysis and speech recognition. Speech 
analysis is a process of extracting features from the 
sampled sound data for speech recognition. Speech 
recognition is the process of identifying the target sound 
or speech based on the features obtained by the speech 
analysis. In addition to these processes, this section also 
describes the anomaly detection. 

2.1. Speech Analysis 

Speech analysis improves recognition accuracy by 
eliminating unnecessary information as noise as well as 
extracting only the features necessary for speech 
recognition. In this study, we use MFCC, a feature 
extraction method to extract the cepstrum by applying a 
filter based on the human hearing (Mel-filter bank), 
which separates the formant frequencies, which is 
necessary for speech recognition, from the pitch 
frequencies, which contains individual differences. Since 
Formant frequencies of MFCC appear in the low-
frequency regions, important information for sound 
classification can be obtained by extracting the lower 
dimensional components of MFCC. Fig. 1 shows an 
example of MFCC that shows the 20-dimensional 
features of MFCC for 5-second of lung sounds. The 
horizontal axis of Fig. 1 represents the 20 segments of the 
5-second data and the vertical axis represents the 
dimensions of MFCC. 
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2.2. Speech Recognition 

Before deep learning is actively studied, dynamic 
programming (DP) matching8 and hidden Markov 
models (HMM)9  were used for speech recognition, 
however, once deep learning was applied to speech 
recognition, Recurrent Neural Network (RNN) were 
applied and false recognition rate of speech was 
significantly decreased. However, it was difficult to learn 
long data stably due to the problem of gradient loss. Then,  
LSTM shown in Fig. 2 were used. LSTM has three gates: 
an input gate (i. in Fig. 2), a forget gate (ii.  in Fig. 2), an 
output gate (iii. in Fig. 2), and a cell that holds past 
information. The problem of gradient loss is solved by 
using gates to select the information in the cells.  

In addition, image recognition methods such as CNNs are 
often utilized in speech recognition10. CNNs are widely 
used in image recognition, but they also have excellent 
performance as a local feature extractor in speech 
recognition. Both CNNs and LSTMs are useful for 
feature extraction of lung sounds, and in the previous 
study, classification models using C-LSTM that 
possesses both CNN and LSTM features have shown 
higher accuracy11. 

2.3. Anomaly Detection 

Anomaly detection is a method that creates a distribution 
of normal data by learning only normal data, then, 
regards the data that do not belong to the distribution of 
normal as abnormal data. In this section, we describe the 
outlier (anomaly) detection methods using machine 
learning. In general, unsupervised outlier detection 
methods execute feature extraction and distribution 
creation separately.  For example, auto-encoder is first 
used to extract features from the input data, then 
clustering methods such as k-means and gaussian 
mixture model (GMM) are applied to create distributions. 
One of the problems in such learning structures is that the 
learning of feature extraction and clustering are executed 
separately. The features extracted independently from the 
clustering process may not be useful. In order to 
accurately detect outliers, a coherent feature extraction is 
required for clustering. 
The structure of DAGMM is shown in Fig. 3. DAGMM 
is an outlier detection method that performs feature 
extraction and clustering simultaneously. The feature 
extraction is realized by a compression network using 
auto-encoder and the clustering is realized by combining 
an estimation network and GMM. The compression 
network outputs the encoded feature and the 
reconstructed data of the inputs, and the estimation 
network outputs the probability that the input 𝑥𝑥 belongs 
to each cluster. In the compression network, input 𝑥𝑥 is 
encoded to feature 𝑍𝑍𝑐𝑐 . Furthermore, the feature 𝑍𝑍𝑐𝑐  is 
decoded to obtain the reconstructed image 𝑥𝑥′ . In the 
compression network, auto-encoder learns that 𝑥𝑥 and 𝑥𝑥′ 
become the same, where the reconstruction error 𝑍𝑍𝑟𝑟  is 
represented as follows. 

 𝑍𝑍𝑟𝑟 = (𝑑𝑑1,𝑑𝑑2) = �
�𝑥𝑥−𝑥𝑥′�2
‖𝑥𝑥‖2

, 𝑥𝑥∙𝑥𝑥′

‖𝑥𝑥‖2‖𝑥𝑥′‖2
�. (1) 

 

Fig. 1.  MFCC with 20 dimensions 

 
𝜎𝜎: Sigmoid function 

𝐶𝐶: Cell memory 
ℎ: Cell output 
𝑓𝑓: Forget gate 
𝑖𝑖: Input gate 

𝑜𝑜: Output gate 

Fig. 2.  Structure of LSTM 
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By using the two measures 𝑑𝑑1 and 𝑑𝑑2, we can measure 
the reconstruction error from different perspectives. Then, 
the concatenated feature of  𝑍𝑍𝑐𝑐 and error 𝑍𝑍𝑟𝑟 generated by 
the compression network forms a new feature 𝑍𝑍. With 
this as the input to the estimation network, the estimation 
network then outputs the affiliation probability 𝛾𝛾� of how 
well 𝑍𝑍  is matched to each cluster. Then, GMM is 
generated by the feature 𝑍𝑍 and the affiliation probability 
𝛾𝛾�. GMM requires three parameters: the mixture ratio 𝑝𝑝ℎ𝑖𝑖, 
the mean matrix 𝑚𝑚𝑚𝑚, and the covariance matrix 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
The formula for each is as follows. 

 𝑝𝑝ℎ𝑖𝑖𝑘𝑘 = ∑ 𝛾𝛾�𝑖𝑖𝑖𝑖
𝑁𝑁

𝑁𝑁
𝑖𝑖=1 . (2) 

 𝑚𝑚𝑚𝑚𝑘𝑘 = ∑ 𝛾𝛾�𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝛾𝛾�𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

. (3) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 = ∑ 𝛾𝛾�𝑖𝑖𝑖𝑖(𝑍𝑍𝑖𝑖−𝑚𝑚𝑚𝑚𝑘𝑘)𝑁𝑁
𝑖𝑖=1 (𝑍𝑍𝑖𝑖−𝑚𝑚𝑚𝑚𝑘𝑘)𝑇𝑇

∑ 𝛾𝛾�𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

. (4) 

DAGMM calculates the energy of the feature 𝑍𝑍  after the 
generation of the GMM: when a data is located in the 
center of the distribution of the GMM, the energy of 𝑍𝑍 is 
small, and the energy of the off-centered 𝑍𝑍 is large. The 
energy function is represented  as follows. 

 𝐸𝐸(𝑍𝑍) = −𝑙𝑙𝑙𝑙𝑙𝑙 �∑ 𝑝𝑝ℎ𝑖𝑖𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝑒𝑒𝑒𝑒𝑒𝑒�−1
2

(𝑧𝑧−𝑚𝑚𝑚𝑚𝑘𝑘)𝑇𝑇 ∑ (𝑧𝑧−𝑚𝑚𝑚𝑚𝑘𝑘)−1
𝑘𝑘 �

�|2𝜋𝜋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘|
�.        (5) 

DAGMM can learn feature extraction suitable for 
clustering by the above learning structure. In addition, 
when outlier detection is performed, the energy of 
abnormal data is expected to be larger than that of normal 
data. 

3. Proposed methods 

In this study, we deal with an anomaly detection 
algorithm for lung sounds. Since previous studies in lung 
sounds have been concerned with the lack of data, an 
anomaly detection algorithm is suitable because normal 
data is easier to obtain than abnormal data and obtains 
generalized features even with a small number of data. In 
this study, the conventional DAGMM is regarded as the 
conventional method that realizes anomaly detection 
performing both clustering and feature extraction 
simultaneously. 
From the next subsection, we propose a deep learning 
algorithm that improves the feature extraction of 
DAGMM for lung sounds. Specifically, we replace the 
compression network in DAGMM in Fig. 3 with various 
types of auto-encoders based on CNN, LSTM and C-
LSTM. Since the three auto-encoders based on CNN, 
LSTM and C-LSTM have different structures and 
characteristics, the details of each structure are described 
one by one. 

3.1. Convolutional auto-encoder (CAE) 

The structure of a CAE is shown in Fig. 4. The input data 
is converted to an image as shown in Fig. 1 by applying 
MFCC to 5-second unlabeled sound data. Therefore, it is 
possible to perform convolutional processing on sound 
data as the same way as on images. CAE encodes the 
input by an Encoder consisting of two convolutional and 
two pooling layers, and then reconstructs the input by a 
Decoder consisting of two deconvolutional and two 
upsampling layers. The structure of the compression 
network with convolution and pooling captures the local 
features of MFCC making it easier to ignore the noise 
that is likely to have an influence on speech recognition. 

 

Fig. 3.  Structure of DAGMM 
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3.2. LSTM-based auto-encoder (LSTM-AE) 

The structure of a LSTM-AE is shown in Fig. 5 The 
LSTM-AE dealt with in this study is based on the 
structure proposed in the literature12. As in the case of 
CNN, we use unlabeled data to train Encoder LSTM and 
Decoder LSTM. In this case, the details of the network 
structure are as follows. First, Encoder LSTM outputs 80 
features from the hidden layer of LSTM. Then, the input 
data to the Encoder LSTM (20×20) is mirrored and added 
to the generated features. This process is carried out by 
duplicating the generated one-dimensional features (80) 
20 times to form a two-dimensional features (20×80) as 
shown in Fig. 5, and the generated two-dimensional 
features is combined with the mirroring input (20×20). 
This yields a new feature (20×100). Here, we explain the 
meaning of combining the generated features and 
mirroring input. Since the features (80) obtained by the 
Encoder LSTM has lost the information on the time axis, 
it is difficult to reconstruct the input image at the output 
layer. Therefore, the mirroring input serves as a flag for 
reconstructing the input from the features, and also has 

the effect of giving information on the inverse time axis. 
The combined features described above (20×100) are 
input to the Decoder LSTM row by row in time order 
(1×100), and the Decoder LSTM outputs the features 
(80)  corresponding to each time. The output of one-
dimensional features (80) is converted to a size (20) 
equivalent to the number of columns, i.e., 20 time 
segments of the input data, where the conversion is 
implemented by MLP. Here, the features (20) generated 
at all the time (20) are joined in sequence to obtain data 
with the same size as the input data (20×20). The purpose 
of an auto-encoder using LSTM is to make the output be 
the same as the input. 

3.3. C-LSTM-based auto-encoder (C-LSTM-AE) 

C-LSTM is a neural network that uses convolution layers 
when inputs to the sigmoid function of each gate of 
LSTM (ⅰ., ⅱ., and ⅲ. in Fig. 2) are calculated, and when 
the input to the tanh layer (ⅳ. in Fig. 2) is calculated. 
Thus, LSTM can implement data processing considering 
peripheral information. The output shape is the same as 
the CNN, which is (the size of the feature map after 

 

Fig. 5.  Structure of LSTM-AE 

 

Fig. 4.  Structure of CAE 
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convolution) x (the number of feature maps). We propose 
two structures of C-LSTM-AEs: the first is the C-LSTM-
AE with convolutional decoder and the second is the C-
LSTM-AE with LSTM decoder. The former structure is 
shown in Fig. 6 and the latter structure is shown in Fig. 7. 
The difference between the two is the structures of the 
decoders, which is described in detail in the next sub-
subsection. 

3.3.1.  Convolutional decoder 

In Fig. 6, the decoder consists of two deconvolutional 
layers and two upsampling layers, which is similar to the 
decoder used in the CAE. As the feature map of C-LSTM 
is two-dimension like CNN, the network structure is 
similar to that of CAE using deconvolution layers in the 
decoder. This structure is expected to capture local 
features while taking into account time-series 
information. 

3.3.2.  LSTM-Decoder 

In Fig. 7, the decoder has the same structure as that used 
in the LSTM-AE, which converts the features (2×2×80) 

obtained by the C-LSTM's encoder into a one-
dimensional features (320). In addition, the mirroring 
input is generated for combining the one-dimensional 
features and the mirroring input. Then, Decoder LSTM 
outputs a one-dimensional features (80) every time step, 
and it is converted by MLP into the array with the size 
(20) which is the same as the number of columns, i.e., 20 
time segments of the input data. Therefore,  the shape of 
the final output becomes the same as the input. Since we 
use C-LSTM and pooling layers in the Encoder, it is 
expected to learn the features considering time series 
information while mitigating the effects of noises in the 
input. 

4. Experiments and results 

4.1. Data overview 

In this experiment, we used lung sounds data provided by 
Yamaguchi University Hospital, Japan to discriminate 
between discontinuous rale3 (abnormal sounds) and 
normal sounds. The data used in this study are 5-second 
data, which were cut out from the data recorded during 
auscultation in a private room with the subjects in a 

 

Fig. 6.  Structure of C-LSTM-AE with convolutional decoder 

 

Fig. 7.  Structure of C-LSTM-AE with LSTM decoder 
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seated position, and judged to be normal, fine crackle and 
coase crackle by the doctor. Here, the 12 areas were used 
for auscultation, that is, the chest area was firstly divided 
into four areas: upper and lower portions of both left and 
right lungs, respectively, and furthermore, the three 
areas : anterior, lateral, and posterior portions of the lungs 
are considered. Therefore, auscultation is done at totally 
12 areas of lung, and the lung sounds of each area were 
recorded for more than three respiratory phases 
(inhalation plus exhalation) and more than about 15 
seconds. Although the data were acquired from the three 
areas in the front, side, and back, the number of channels 
was 1 because the diagnosis was made independently 
from each area. The sampling rate was set to 11 kHz and 
the digital stethoscope (Power stethoscope, Starkey 
Japan) was connected to a voice recorder (ICD-MS1, 
Sony) and the sounds were recorded in a flash memory 
in 16-bit WAV file format. It is noted that noises caused 
during data acquisition depend on the way of breathing, 
subtle shifts in the stethoscope's position, and differences 
in the loudness of the sound. If an user is not skilled in 
handling the stethoscope, a lot of noises are picked up. In 
this study, the doctor who has enough experiences of  
auscultation recoded the lung sounds. The discontinuous 
rale in this study are discontinuous rales of short duration, 
and can be classified into two types: fine crackle and 
coarse crackle. Table 1 shows the characteristics of each 
auscultation sound including the normal sound. The 
characteristics of the abnormal intermittent sounds show 
sudden appearance, high sound pressure level, and very 
short duration. In addition to the paucity of data, the 
frequency bands of normal and abnormal sounds are 
overlapped, and the individual differences are large, thus, 
frequency analysis is difficult for the classification. In 
this study, to deal with the anomaly detection algorithm, 
two types of discontinuous rale are grouped together as 
one abnormal class. 

4.2. Experimental conditions 

The anomaly detection method was applied to two 
classes of auscultation sounds: abnormal and normal. The 
number of data of each class, the number of patients 
including their sex are shown in Table 2. 130 of the 
normal data were extracted as training data, and 10 
normal data and 79 abnormal data that were not included 
in the training data were extracted as test data. In this 

study, we conducted an experiment with 14-fold cross 
validation. The evaluation index is Area under the Curve 
(AUC) which is area under the ROC curve, and the 
thresholds of the classification boundary of normal and 
abnormal when calculating ROC is determined by 
dividing the energy range of normal data into 11 ranges. 
In order to achieve high performance with this evaluation 
method, it is necessary to give lower energy to normal 
data and higher energy to abnormal data. In other words, 
it is necessary to obtain generalized features of normal 
data in training. 
For the input data, pre-processing of data sampling 
(sampling frequency of 2000 Hz), calculation of MFCC, 
and normalization (mean 0, variance 1) were applied 
prior to the training of each method. Because lung sounds 
are diagnosed mostly at frequencies below 2000 Hz13 

clinically, the sampling rate was set at 2000 Hz. 

4.3. Results 

Table 3 shows the AUC scores obtained by the 
conventional and proposed methods after 14-fold cross 
validation. From Table 3, we can see that the mean AUC 

Table 1.  Characteristics of lung sounds4 

Class 
Abnormal 

Normal 
Coarse Fine 

Frequency 
[Hz] 250-500 200-500 

700-1000 150-600 

Duration 
[ms] 10-15 Less than 5 - 

Estimated 
diseases 

Bronchitis,  
Pneumonia,  
Pulmonary 
tuberculosis 

Interstitial 
pneumonia, 
Pulmonary 

fibrosis 

- 

 

Table 2.  Overview of data of each class 

Class Abnormal Normal 
Number of data 79 140 

Number of patients 
(male, female) 

24 
(16, 6) 

12 
(12, 0) 

*Abnormal includes two of unknown sex patients. 
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score (0.9439) obtained by C-LSTM-AE with LSTM 
decoder is the best. The standard deviation obtained by 
each method is shown in Table 4, where C-LSTM-AE 
with LSTM decoder is also show the lowest standard 
deviation, therefore, the AUC scores are not deviated by 
a wide margin compared to other models in each 
validation. 
Here, we discuss the usefulness of the proposed method. 
While the average AUC score of the conventional 
DAGMM without the proposed method is 0.8730, the 
average AUC scores of all the proposed methods are 
higher than that of the conventional DAGMM. 
The results of the t-test of all methods are shown in Table 
5. We can see from Table 5 that there is significant 
differences between the proposed methods and the 
conventional DAGMM, except for LSTM-AE, where the 
significance level is 5% (<0.05). It can be said that the 
performance of DAGMM can be improved by improving 
the compression network. Since the difference is not 

significant for LSTM but significant for the other 
proposed methods, it can be said that the peripheral 
information considered by convolution layers and the 
mitigation of the influence of noises by the pooling layers 
are related to the superiority of the performance in the 
feature extraction of lung sounds. When comparing C-
LSTM-AE(conv) and LSTM-AE, C-LSTM-AE shows 
the better result with a significant difference, thus, the 
combination of both the peripheral information obtained 
by convolution and the time series information obtained 
by LSTM is useful in the feature extraction of lung 
sounds. Although time series information includes the 
important features in the lung sounds, it is susceptible to 
noises, thus it is necessary to use convolution and pooling 
together. When comparing C-LSTM-AE(LSTM) and C-
LSTM-AE(conv),  LSTM decoder is better  because it 
recovers time series information more accurately. 

Table 3.  AUC scores of each method obtained by 14-fold cross validation 

 Methods 

Folds DAGMM DAGMM with 
CAE 

DAGMM with 
LSTM-AE 

DAGMM with 
C-LSTM-AE 

(conv) 

DAGMM with 
C-LSTM-AE 

(LSTM) 
1 0.9316 0.9791 0.8949 0.9911 0.9924 
2 0.8665 0.8722 0.8930 0.8962 0.9038 
3 0.9386 0.9633 0.9032 0.9741 0.9766 
4 0.8633 0.8399 0.7241 0.8437 0.8918 
5 0.8506 0.9101 0.6987 0.9380  0.9323 
6 0.7949 0.8310 0.7633 0.8715 0.8892 
7 0.8519 0.8696 0.8886 0.8930 0.8949 
8 0.8962 0.9557 0.9570 0.9899 0.9861 
9 0.9665 0.9804 0.9873 0.9880 0.9930 
10 0.9146 0.9867 0.9608 0.9684 0.9633 
11 0.8842 0.9006 0.9386 0.9342 0.9462 
12 0.8709 0.9595 0.8842 0.9728 0.9646 
13 0.8506 0.9177 0.8842 0.9449 0.9532 
14 0.7411 0.9044 0.8823 0.9399 0.9272 

Mean 0.8730 0.9193 0.8757 0.9390 0.9439 
(conv): convolutional decoder, (LSTM): LSTM decoder 

Table 4.  Standard deviation of each methods by 14-folds cross validation 

Method DAGMM DAGMM with 
CAE 

DAGMM with 
LSTM-AE 

DAGMM with 
C-LSTM-AE 

(conv) 

DAGMM with 
C-LSTM-AE 

(LSTM) 
Standard deviation 0.0560 0.0508 0.0841 0.0452 0.0365 
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5. Conclusions 

In this paper, various types of compression networks are 
proposed and evaluated by the AUC scores. The 
experimental results showed that utilizing convolution 
and pooling was effective in learning lung sounds, and 
utilizing time-series information together improved the 
performance of the model. In the future, we would like to 
compare these methods with other anomaly detection 
methods and improve the generalization abilities. 
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