
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 

Deep Learning Methods for Semantic Segmentation of Dense 3D SLAM Maps 

Pei Yingjian 
MIST, Kyushu Institute of Technology, 680-4 Kawazu 

Iizuka-shi, Fukuoka 820-8502, Japan 

Sakmongkon Chumkamon 
MIST, Kyushu Institute of Technology, 680-4 Kawazu 

Iizuka-shi, Fukuoka 820-8502, Japan 

Eiji Hayashi 
MIST, Hayashi Lab, 680-4 Kawazu 

Iizuka-shi, Fukuoka 820-8502, Japan 
E-mail: yingjian.pei801@mail.kyutech.jp, m-san@mmcs.mse.kyutech.ac.jp, haya@mse.kyutech.ac.jp   

www.kyutech.ac.jp 

 

  

 

Abstract 

Most real-time SLAM systems can only achieve semi-dense mapping, and the robot lacks specific knowledge of the 
mapping results, so it can only achieve simple positioning and obstacle avoidance, which may be used as an obstacle 
in the face of the target object to be grasped, thus affecting the realization of motion planning. The use of semantic 
segmentation in dense SLAM maps allows the robot to better understand the map information, distinguish the 
meaning of different blocks in the map by semantic labels, and achieve fast feature matching and Loop Closure 
Detection based on the relationship between semantic labels in the scene. There are many semantic segmentation 
datasets based on street scenes and indoor scenes available for use, and these datasets have some common tags. Based 
on these training data, we can derive a semantic segmentation model based on RGB images by using the Pytorch 
platform for training. 
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1.Introduction 

Active obstacle avoidance motion planning is an 
important element in the autonomous motion planning of 
the robot arm. Active obstacle avoidance can not only 
avoid collision damage during the operation of the robot, 
but also improve the robot's ability to sense the 
environment and avoid causing safety accidents. In active 
obstacle avoidance motion planning, one of the 
conditions is the level of the robot's perception of the 
workspace. Effective obstacle avoidance motion 
planning can only be achieved if the robot has a prior 
awareness of the obstacles in the workspace and is able 
to update environmental information at any time during 

the work. The advantage of 3D SLAM is that the robot 
can get the complete spatial information of the current 
environment, and get the abstract modeling of the real 
environment in the virtual environment through the 
octomap, and through the Rviz plugin of ROS platform, 
the obstacle avoidance motion planning can be realized 
with the octomap as the reference. 

For semantic segmentation of dense maps, we can 
either use a direct segmentation method on 3D point 
cloud data or a semantic segmentation method based on 
2D RGB images, and we use the second method due to 
the convenience of training data. We use the second 
method for the convenience of training data. There are 
many semantic segmentation datasets based on street 
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scenes and indoor scenes available for use, and these 
datasets have some common tags. Based on these training 
data, we can derive a semantic segmentation model based 
on RGB images by using the PyTorch platform for 
training. 

There has been some progress in scene marking 
research based on this approach, and our project has now 
applied some of this technology to detect target types in 
3D point cloud data. Combining this progress with 
obstacle avoidance motion planning, the robot will be 
able to accurately distinguish between grasping and 
obstacle avoidance based on an understanding of the 
meaning of the scene, and it will be easier to integrate the 
two systems into the same framework. 

2.Segmentation Model Training 

We refer to the work of Xuan Zhang et al. in selecting the 
semantic segmentation model and improve it to some 
extent based on our system. Our study was mainly trained 
using the ade20k dataset, a training set that includes a 
large number of images and labels of common household 
items and can be applied to most scenarios. For the 
laboratory scenario we will use, we used annotation 
software to additionally annotate a portion of the images 
and add them to the dataset for training. Figure.1 shows 
Example image of our own data. 

In terms of neural network selection, we chose 
PSPNet as the basis, which is very suitable for semantic 
segmentation work such as scene parsing, and 
demonstrated a certain degree of accuracy when tested in 
real scenes using pre-trained models. We used the 
PyTorch platform to initially train the dataset with 
PSPNet50. Due to the limited GPU computing resources 
and the complex environment during the initial training, 
the semantic segmentation effect was not perfect, but a 
clear segmentation boundary could be demonstrated 
under sufficient lighting conditions. 

2.1. Segmentation Models Comparison 

In choosing the model, we mainly examined the training 
accuracy of different neural network models on the 
ade20k dataset, and the indoor part of the ade20k dataset 
was chosen for testing, mainly because our project is 
based on indoor scenes, and the part of the dataset chosen 
cannot accurately evaluate the accuracy of some labels, 
but it can greatly accelerate the training. 
        Figure.1 represents the real-time display of 2D 
semantic segmentation under different models, from top 

to bottom, the original RGB image, PSPnet_50, 
PSPnet_50 with Bayesian filter on, and the unmodified 
ResNet_50 image. From the comparison graphs, it can be 
seen that Bayesian filter does not contribute much to the 
semantic segmentation accuracy of indoor scenes, while 
PSPnet, as an improved network based on ResNet, 
reflects better results on ade20k dataset. It can be seen 
from the figure that PSPnet accurately identifies the 
screen that appear only partially in the scene (green part), 
while the original ResNet is more ambiguous. 

2.2. Segmentation Speed Comparison 

Since SLAM pursues real-time, accuracy and robustness, 
the frame rate should be used as the reference value for 
speed determination. The comparisons in Table.1 are all 
made under Ubuntu 18.04, ROS Melodic environment 
using CPU calculations, and the relevant point cloud 

Table.1 Comparison of segmentation speed (FPS) 
Model FPS (Average) 
PSPnet_50 20 
PSPnet_50 (Bayesian filter) 15 
BasicResNet_50 23 

Figure. 1 Comparison 
between different models 
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generation module is not activated to save system 
resources during the frame rate comparison. 

2.3. Conclusion of Model Selection 

It can be seen from the table that turning on the Bayesian 
filter will have a significant impact on the frame rate, and 
the original ResNet is better than PSPnet in terms of 
fluency. Taking all factors into consideration, the PSPnet 
semantic segmentation model without bayesian filter has 
achieved a good balance between accuracy and speed, 
and we will use this scheme in the actual test. 

3. Overall System Construction 

In this section, we will discuss the setting up of the 
experimental environment and camera selection. The 
first section will give a general overview of the 
experimental environment and the experimental format, 
and the second section will present our considerations 
when selecting a depth camera. 

3.1. Environment Construction 

In order to allow flexible observation of the workspace 
by depth cameras, we placed the depth camera for SLAM 
at the manipulator of the robot arm, and to compensate 
for blind spots in the observation, we also placed a 
plurality of depth cameras at other locations in the 
workspace. In the following sections, we will mainly 
demonstrate and illustrate the main camera fixed on the 
manipulator. 

After our depth camera acquires the semantic 
segmentation image, it publishes and projects the 2D 
image to the point cloud, and generates Octomap using 
the point cloud image. 
        Figure.2 shows how the system looks like in a rviz 
UI in ROS, you can see Semantic Image on the corner 
and a octomap view in the main window. 
        Figure.3 shows the overall view of system frame. 

3.2. Camera Selection 

In terms of camera selection, Intel Realsense D400 series 
was chosen for this study. The D435i with IMU module 
and the D435 without IMU module were used in practice 
and they both performed consistently in the tests. The 
reason for using D435 series is that when building 3D 
SLAM maps, it is necessary to provide accurate depth 
data and clearer images for feature recognition and 
reference, and the overall size of the camera has to be 
taken into account as well, so the camera should not be 
too heavy or too big to be mounted on the operation end 
of the robot arm. The D435i, which comes with an IMU 
module, is useful for 3D SLAM mapping and offers more 
possibilities for optimization in subsequent development. 

4. Mapping 

The platform we use is ROS Melodic based on Ubuntu 
18.04, and the graphical interface is ROS Rviz, which is 
also used to facilitate the subsequent obstacle avoidance 
motion planning. 
    Due to the relatively small workspace used in this 
study, some of the parameters of the official launch file 
are not applicable to the realities of this study, so we have 
adjusted some of the parameters. 
    Through the actual test, the overall map building 
resolution is relatively high and the map building is 
nearly perfect. The semantic octomap built can be 
successfully saved through the relevant functions of 
octomap_server, and can be published directly in 
octomap_server with .bt format into Marker Array Topic 
under the condition that the actual working scene of the 
robot remains unchanged. 
    After completing the scene mapping, the obstacle 
avoidance motion planning is performed using the 
RRTconnect algorithm in MoveIt! and output directly to Figure. 2 Rviz scene demo 

Figure. 3 Conceptual Frame 
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the Motoman robot arm. In the Gazebo simulation 
environment, the obstacle avoidance planning effect on 
octomap is good. 
    In practice, due to the problem of hand-eye calibration 
and coordinate conversion, we can use static coordinate 
conversion to fix the coordinates of the camera and robot 
model to realize the map building and obstacle avoidance 
function in MoveIt! It is also possible to save and publish 
octomap at the same time to realize real-time map 
building and obstacle avoidance planning in different 
Rviz terminals. 
        Since the actual runtime is based on the Python 2 
platform, and the latest version of PyTorch no longer 
supports Python 2, we use the older version 0.4.0, which 
is only supported by the CPU, and therefore runs with a 
certain degree of lag and has some shortcomings in terms 
of time efficiency. 

5. Conclusion 

After simulation and practical testing, the deep learning 
method can be integrated with our system to a certain 
extent, which is of great help in the subsequent 
development of intelligent control for Motoman robot. 
Semantic 3D SLAM's mapping results are in line with 
expectations, the obstacle avoidance function works 
normally, and the constructed map can be reused, which 
eliminates the need to model the scene in a virtual 
environment. This module will continue to be refined and 
developed as part of the project. 

6. Discussion & Future Works 

In practical tests, we also found the following problems:  
1) Inefficient map building. When using the deep 
learning method described in this paper, because the 
feature point matching method not use the semantic data 
to match the point, and the rate at which the camera 
extracts keyframes from the video stream depends on the 
processing speed of the computer and the camera, in the 
case where the robot arm moves too fast, the camera will 
collect two pictures with almost no similar features, and 
thus cannot form a closed loop to build a map.  In the 
actual test we have to use slower movement speed to get 
the complete map, which affects the overall map building 
efficiency.  
2) Due to the existence of multiple coordinate nodes in 
Motoman's virtual model, multiple coordinate 
conversions are required when binding the camera 
coordinates, which will result in the camera coordinates 
being incorrectly bound to the world coordinate system 
or the overhang position. We use a compromise between 
opening two terminals to create the final effect, and using 
fixed coordinates is also a last resort. 

3) We placed more than one depth camera in the 
workspace, but we only used one of them in practice, and 
we hope that in the future we will be able to integrate the 
depth data from all the cameras into a complete map. 
    Our next plan is to replace the modules with models 
trained by other deep learning methods to improve the 
efficiency of map building. We plan to use Siamese 
Neural Network-based semantic feature recognition 
matching algorithms and implement the object-level 
building, and we refer to the methods used in Ref. 4 and 
Ref. 5 for this work. 
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