
© The 2021 International Conference on Artificial Life and Robotics (ICAROB2021), January 21 to 24, 2021 

Landslide Area Detection from Synthetic Aperture Radar Images Using Convolutional 
Adversarial Autoencoder and One-class SVM 

Shingo Mabu 
Graduate School of Sciences and Technology for Innovation, Yamaguchi University 

 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan 

Soichiro Hirata 
Graduate School of Sciences and Technology for Innovation, Yamaguchi University 

 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan   

Takashi Kuremoto 
Graduate School of Sciences and Technology for Innovation, Yamaguchi University 

 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan 
E-mail: mabu@yamaguchi-u.ac.jp, wu@yamaguchi-u.ac.jp 

Abstract 

An anomaly detection model using deep learning for detecting disaster-stricken (landslide) areas in synthetic aperture 
radar images is proposed. Since it is difficult to obtain a large number of training images, especially disaster area 
images, with annotations, we design an anomaly detection model that only uses normal area images for the training, 
where the proposed model combines a convolutional adversarial autoencoder and one-class SVM. In the experiments, 
the ability in detecting normal and abnormal areas is evaluated. 
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1. Introduction

In Japan, typhoons often approach and pass from July to 
September every year because of the effects of westerly 
winds and high atmospheric pressures. Landslide 
disasters frequently occur due to heavy rains caused by 
typhoons, which leads to major accidents related to 
transportation and human life. Until now, observation of 
the disaster areas, e.g., landslides, has been mainly 
conducted by aircraft1. However, in recent years, remote 
sensing using satellite images has attracted attention as a 
method for observing a wide area2. In satellite remote 
sensing, a sensor is mounted on an artificial satellite to 
observe the ground surface of the earth, and the obtained 
image is analyzed. Therefore, we can see the damages 
without going directly to the disaster areas. Typical 
satellite images include optical images that are obtained 

from sunlight reflection, and synthetic aperture radar 
(SAR) images that are obtained by sensors that emit 
microwaves to the ground surface of the earth. It is easy 
for a human to interpret optical images, but they cannot 
be observed at night or in bad weather. On the other hand, 
SAR can observe the surface of the earth regardless of 
time and weather; thus, SAR images are useful for rapid 
rescue activities at night and in bad weather conditions. 
However, it is difficult for human eyes to interpret SAR 
images, unlike optical images. Therefore, many methods 
that analyze SAR images have been proposed to detect 
disaster areas rapidly3,4, and machine learning techniques, 
especially deep learning, have also been applied to 
landslide area detection5.  
When deep learning is applied to disaster area detection, 
a large number of training samples are necessary. 
However, shooting conditions of SAR images are 
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different time by time, e.g., seasons, and it is also difficult 
to obtain a sufficient number of training samples with 
annotation (correct class labels) immediately after a 
disaster occurs. To overcome this problem, we propose 
an anomaly detection system that detects abnormal 
images that deviate from the features of normal images. 
The proposed method uses only normal images for the 
training without using abnormal (disaster) images. 
Normal images are relatively easier to obtain compared 
with abnormal images, thus anomaly detection is useful 
in a practical situation of disaster area detection. The 
proposed method consists of a feature extraction part and 
a detection part. The feature extraction is realized by 
convolutional adversarial autoencoder (CAAE) that is the 
extension of adversarial autoencoder (AAE)6, where the 
layers of AAE are replaced with convolution and 
deconvolution layers. CAAE is trained with 
unsupervised learning, thus the cost of the annotation is 
not necessary. The detection part is realized by one-class 
SVM (OCSVM)7 that detects outliers that deviate from 
the normal region. 
This paper is organized as follows. In section 2, the 
mechanism and features of SAR is introduced. In Section 
3, the proposed method that combines CAAE and 
OCSVM is explained. In section 4, the experimental 
conditions and results are described. Finally, section 5 is 
devoted to conclusions. 
 

2. Synthetic Aperture Radar (SAR) 

SAR is an active image radar that synthesizes small 
antennas mounted on a platform, such as an aircraft or 
satellite, to realize large virtual antennas and generates 
high-resolution radar images8,9,10). Because SAR is an 
active sensor that emits microwaves, it is possible to 
observe the surface of the earth regardless of the presence 
or absence of sunlight and clouds. SAR images are 
applied to the research fields of agriculture, disaster, 
oceans, earth science, and so on11,12). SAR emits 
microwaves and receives the reflected microwaves from 
the surface of the earth (Fig. 1). When a microwave 
emitted from the SAR antenna enters a conductor or 
dielectric, a current is induced, and the microwave is 
reemitted from the induced current. This is called 
scattering and scattering in the opposite direction of the 
incident wave is called backscattering. Because 
backscattering is the diffuse reflection caused by 
scattering, backscattering is different from specular 
reflection.  
SAR receives the backscattering and executes image 
reproduction. The scattering intensity of the microwaves 
strongly depends on the frequency, wavelength and 

electric characteristics (dielectric constant, etc.) of the 
scatterer. Therefore, for example, seawater or cars made 
of metal strongly reflect microwaves because a current is 
easily induced. On the other hand, sand and trees have 
low reflectivity because hardly any current is induced. In 
each pixel of SAR images, the intensity of the received 
microwave is recorded. 

3. Materials and methods 

3.1. Dataset 

A SAR image used in this paper is shown in Fig. 2. It 
shows the northern Kyushu area in Japan on July 7, 2017, 
taken by Advanced Land Observing Satellite No. 2 
(ALOS-2). Large-scale landslides due to the torrential 
rain from July 5 to 6, 2017, occurred in this area. The 
yellow areas in Fig. 2 show the locations of the landslide 
that were annotated by the Geospatial Information 
Authority of Japan. The size of the image is 6648 ×
4360 [pixels] and the resolution per pixel is about 3m2. 
In this paper, ROI (region of interest)-based anomaly 
detection is carried out, that is, we first divided the whole 

 

Fig. 1.  Microwave emission, Scattering, and backscattering of 
SAR10 

 

Fig. 2.  SAR image and landslide areas (yellow areas) 
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SAR image into 128 × 128 [pixels] ROI images. Fig. 3 
shows examples of normal and abnormal ROI images. 
Note that the target area for the detection of normal and 
abnormal is the central 32 × 32  [pixels] area of each 
ROI image. In other words, the surrounding area of the 
target area is used as a piece of supporting information 
(context) for the detection. The ROI images were split 
into training data including normal only, testing data of 
normal, and testing data of abnormal. 

3.2. Method 

The overview of the anomaly detection model designed 
in this paper is shown in Fig. 4, where CAAE generates 
feature fector 𝒛𝒛, 𝒛𝒛 is transformed by principal component 
analysis (PCA), and OCSVM classifies 𝒛𝒛 as normal or  
abnormal.   

3.1.1.  Feature extraction using Convolutional 
Adversarial Autoencoder (CAAE) 

In this paper, the extended model of AAE6, named CAAE, 
is used for the feature extraction of SAR images. Fig. 5 

shows the detailed structure of CAAE that extracts 
features from ROI images. The upper part of Fig. 5 is a 
convolutional autoencoder (CAE) that contains an 
encoder and a decoder. The encoder outputs a 128-
dimensional feature vector 𝒛𝒛, and the decoder outputs the 
reconstructed ROI images. The encoder consists of some 
Block1 and fully-connected layers, where a Block1 
contains convolution and max pooling layers along with 
batch normalization and rectified linear unit (ReLU). The 
decoder consists of some Block2, fully-connected and 
deconvolution layers, where a Block2 contains a 
deconvolution layer along with batch normalization and 
ReLU. The loss function (LOSS1 in Fig. 5) is the mean 
squared error between the input and output images, and 
the weights of the encoder and decoder are updated by 
error backpropagation with Adam13 to minimize LOSS1. 
The encoder and discriminator at the lower part of Fig. 5 
are adversarial networks, where the discriminator 

 

Fig. 3.  Examples of 128 × 128 [pixels] ROI images 

 

 

Fig. 5. Detailed structure of CAAE 

 

Fig. 4.  Examples of 128 × 128 [pixels] ROI images 
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distinguishes the vectors generated by Gaussian 
distribution (regarded as positive or real samples) from 
the feature vector 𝒛𝒛 inputted from the encoder (regarded 
as negative or fake samples). The loss function (LOSS2 
in Fig. 5) is the softmax cross-entropy based on the 
positive and negative probabilities outputted by the 
discriminator. The discriminator updates the weights to 
minimize LOSS2, while the encoder updates the weights 
to maximize LOSS2. As a result of the above learning, 
the feature vector 𝒛𝒛  captures the features of the input 
images and its distribution follows a Gaussian 
distribution. The constraint imposed by the adversarial 
networks increases the robustness of the feature 
extraction executed by the convolutional autoencoder.  

3.3. Anomaly detection by One-class SVM 
(OCSVM) 

The feature vector 𝒛𝒛 generated by CAAE is inputted to 
OCSVM. SVM is originally a supervised-learning-based 
classification algorithm for two classes, which needs 
training data with class labels. OCSVM needs only one-
class data for the training, and after the training, OCSVM 
regards the data that deviates from the learned class data 
as outliers, that is, abnormal. Anomaly detection for the 
testing images in this paper is carried out by OCSVM. 
OCSVM has a parameter ν that determines the proportion 
of normal and abnormal areas. For example, when ν is set 
at a large value as shown in Fig. 6 (left), the normal area 
becomes small. In this case, only the data that is very near 
to the center of the normal area is regarded as normal, 
which increases the sensitivity of abnormal, but may 
increase false positives, that is, the true normal (negative) 
is misclassified as abnormal (positive). Conversely, 
when ν is small, the normal area becomes large, which 
increases the specificity, but may increase false negatives, 
that is, the true abnormal is regarded as normal. 
Therefore, the value of ν should be determined carefully 
considering the trade-off between false positive and false 
negative.  

4. Experiments 

4.1. Condition 1 

The class labels of ROIs are given by the following rule. 
When 60% or more area of the central 32 × 32 area of 
each ROI image contains the abnormal area, it is regarded 
as abnormal, otherwise, normal. The number of training 
data (normal only), that of testing data (normal), and that 
of testing data (abnormal) are shown in Table 1. CAAE 
is trained with the training data and all the training data 
are encoded as the feature vectors. Then, PCA is applied 
to the feature vectors to reduce the number of dimensions 
from 128 to 40. The feature vectors after the dimensional 
reduction by PCA are used to train OCSVM. Finally, the 
testing images encoded and transformed by CAAE and 
PCA are classified as normal and abnormal. 
Table 2 shows the results obtained by the combination of 
CAE, PCA, and OCSVM (called conventional method), 
and Table 3 shows those obtained by the combination of 
CAAE, PCA, and OCSVM (called proposed method). 
The best accuracy obtained by the conventional method 
is 55.7% (ν=0.5) and that obtained by the proposed 
method is 57.9% (ν=0.4). Therefore, we can confirm that 
CAAE is better than CAE as a feature extraction method, 
however, there is a large room for improvement on the 
accuracy. 

4.2. Condition 2 

In condition 2, the class labels of ROIs are given by the 
following rule. The labeling rule of abnormal areas is the 
same as condition 1, that is, when 60% or more area of 
each ROI image contains abnormal, it is regarded as 
abnormal. In the case of the labeling of normal, ROIs 
without containing any abnormal areas are regarded as 
normal. In condition 1, the threshold that separates the 
normal and abnormal ROIs is 60%, which means that 
even if the ROIs contains 59% abnormal areas, they 
should be classified as normal. To clearly separate the 

 

Fig. 6.  Effects of ν in OCSVM 

Table 1. The number of ROI images in condition 1 

Training/Testing The number of images 
Training (normal only) 13542 
Testing (normal) 164 
Testing (abnormal) 164 
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features of normal and abnormal, condition 2 adopts the 
above labeling rule. Table 4 shows the numbers of 
training and testing data. The procedure of executing 
CAAE, PCA and OCSVM is the same as condition 1. 
Table 5 shows the results of the conventional method and 
Table 6 shows those of the proposed method. The best 
accuracy obtained by the conventional method is 61.4% 
(ν=0.2) and that obtained by the proposed method is 
66.0% (ν=0.5); thus we can see that the accuracy 
becomes better than condition 1 and the accuracy 
obtained by CAAE is better than that by CAE.  

5. Conclusions 

In this paper, we proposed an anomaly detection method 
for classifying normal (non-disaster) areas and abnormal 
(disaster/landslide) areas, where the proposed method 
consists of CAAE, PCA, and OCSVM. In the 
experiments, we evaluated the detection performance in 
the two conditions. From the results, it was clarified that 
CAAE is better than CAE as a feature extraction method. 
The remaining problem is the classification of ROI 
images that contain small abnormal areas. Since it is 
difficult to make a sharp boundary between normal and 

abnormal, other method such as segmentaion models 
would be useful. In addition, the proposed method should 
be evaluated on other areas of disasters to confirm the 
generalization ability. 
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