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Abstract 

Neurofeedback systems have been found to be effective in the clinical rehabilitation of paralysis. However, most 
systems exist only for use with EEG, which is cumbersome to apply to patients and has lower spatial resolution than 
MEG. Furthermore, the best practices for neural data feature extraction and feature selection are not well established. 
The inclusion of the best performing feature extraction algorithms is critical to the development of clinical 
neurofeedback systems. Using simultaneously collected MEG and accelerometer data before and during 10 
spontaneous finger movements, we performed an in-depth comparison of independent components analysis (ICA) 
and spatio-spectral decomposition (SSD) algorithms for their individual abilities to isolate movement-relevant 
features in brain activity. Having restricted raw data to that from sensorimotor rhythm (SMR) frequencies in select 
MEG sensors over sensorimotor cortex, we compared ICA and SSD components using: (1) 2D topographies, (2) 
activations over time, (3) and correlations with accelerometer data at both 0ms and 60ms time delays. SSD performed 
more quickly and produced components that were more highly correlated with the behavioral data than ICA. We will 
discuss these results and suggestions for application to neurofeedback systems. In particular, we will present detailed 
visualizations of SSD results and discuss potential strategies and pitfalls for feature selection. 
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1. Introduction 

For diseases that affect brain function, such as strokes, 
immediate treatment with medication and surgery is 

important, but post-onset rehabilitation also plays a 
critical role in the wellbeing of patients. 

One of the techniques used for non-invasive brain 
function evaluation is magnetoencephalography (MEG)1-
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2. MEG has high temporal resolution as well as high 
spatial resolution, and it is commonly used clinically for 
epilepsy diagnosis and rehabilitation10. Without the 
ability to monitor a patient’s relevant brain activity in real 
time during rehabilitative exercises, efficient 
rehabilitation cannot occur.  

The purpose of this study was to evaluate the use of 
spatio-spectral decomposition (SSD) of real-time MEG 
data during spontaneous movement3-6.  Performance was 
evaluated by comparing SSD results to the results from a 
standard analysis technique, independent components 
analysis (ICA). SSD completed decomposition faster 
than did ICA, with the SSD analysis completed about 270 
times faster in the preliminary experiment. In addition, as 
shown in Table 1, the correlation with the accelerometer 
data (shifted by 60[ms] to account for the time difference 
between neural motor planning and actual motor 
execution) was also stronger for the most highly 
correlated SSD component as compared to the most 
highly correlated ICA component. Our results indicated 
that SSD outperforms ICA in the context of feature 
extraction for online, real-time MEG analysis; therefore, 
we present our investigation of the SSD components and 
conclude with suggestions for feature selection. 
 
Table 1. The correlation with the accelerometer data and 

ICA or SSD. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Experiment 

The data were collected using a full-head 306-channel 
magnetoencephalograph (Vectorview, Elekta-Neuromag, 
Helsinki, Finland) at a sampling frequency of 1000 [Hz]. 
In order to reduce power supply noise and other 

interference, measurements were taken inside a magnetic 
field shield room (1 [kHz] shielding rate 55.2 [dB]). The 
participant was a healthy person who attached an 
acceleration sensor to the middle finger of his left hand 
and performed ten spontaneous flexion (i.e., bending) 
and extension (i.e., relaxing) movements of the indicated 
finger as shown in Fig.1 (hereinafter referred to as “the 
task”). The accelerometer data indicated the start and 
duration of flexion and extension. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: The spontaneous flexion (bending) and extension 
(relaxing) movements. 

 

3. Analysis Method 

After collecting the raw MEG data from all 306 channels, 
we sub-selected 26 gradiometers corresponding to the 
right sensorimotor cortex (SMC) and performed ICA and 
SSD analyses7-8, which each identified components 
within the largest cited frequency band for sensorimotor 
rhythm (SMR)9, 8-30 [Hz]. As presented in Table 1, we 
calculated Pearson correlations between the time-
adjusted accelerometer data and each of the top five 
components from ICA and SSD. We calculated the SSD 
topographies about 20 seconds and then performed a 
Morlet wavelet transform to examine frequency power 
over time (Fig.2). In addition, in order to increase the 
signal-to-noise ratio (SNR), the wavelet analysis was 
performed on task-locked averaged components to 
indicate average brain activity in the final 2 seconds 
before flexion start. There were 10 tasks completed over 
20 seconds at irregular intervals. 
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Fig.2: The flow of analysis method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: The results of Topography using SSD 
 
 

 
 
 
 
 
 
 
 
 
 
 

2nd SSD 

 
 
 
 
 
 
 
 
 
 
 

3rd SSD 
 
 
 
 
 
 
 
 
 
 

4th SSD 
 
 
 
 
 
 
 
 
 
 

      5th SSD 
Fig.4: The results of the across-task averaged second, 

third, fourth and fifth SSD components 
 

4. Results 

From the results of topography (Fig. 3), the first eight 
SSD components showed activity localized around the 
right SMC. As shown in Fig. 4, the across-task averaged 
third and fourth SSD components had higher SMR band 
power immediately preceding the task. The pattern of 
activity observed in the SMR frequency band across task 
instances indicated that the first four SSD components 
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captured artifactual activity (e.g., movement activity). In 
the averaged component as well as across task instances, 
steady activity during the two seconds preceding flexion 
was observed at 12-13 [Hz] in the fifth SSD component. 

 

5. Conclusion 

In this paper, we performed offline MEG data analysis 
during flexion and extension of the middle finger of the 
left hand in order to investigate the use of SSD in online, 
real-time MEG analysis. 

There are several key points to take away regarding the 
automation of feature selection in this context. First, the 
SSD component with the highest correlation to 
accelerometer data (comp. 2, r = -0.89) was, in this case, 
indicative of muscular noise reaching the MEG sensors 
rather than indicating neural activity as desired. Second, 
the component most likely to indicate relevant neural 
activity (comp. 5) was, in addition to not being the most 
highly correlated with accelerometer data (r = -0.45), also 
not the first component (i.e., it was not the component 
with the strongest eigenvalue or largest SNR). Finally, 
when only considering a few trials (i.e., at the beginning 
of neurofeedback rehabilitation) or particularly noisy 
data, using averaging techniques can lead to incorrect 
feature selection due to the extreme amplitude of artifacts 
and the components that capture them. Therefore, a 
component to use for patient feedback cannot be selected 
based solely on having the highest average SMR power, 
the highest correlation with behavioral data, or the 
highest eigenvalue.  

Future study will include the same analysis for SSD 
components 6-8, which show promising topographies. 
Furthermore, we will investigate the usefulness of 
baseline correction in component selection and of 
logarithmically scaled components as features in 
unsupervised learning.  
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