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Abstract 

Magnetic Particle Testing (MPT), also referred to as magnetic particle inspection, is a nondestructive examination 
(NDE) technique used to detect surface and slightly subsurface flaws in most ferromagnetic materials such as iron, 
nickel, and cobalt, and some of their alloys. In a bad environment, the procedure is complicated, and automation of 
MPT is strongly desired. To find defects in the formed magnetic powder pattern, it is required to be highly skilled 
and automation has been considered difficult. In recent years, many defect detection methods based on deep learning 
have been proposed, and the effectiveness of deep learning has been shown in the task of automatically detecting 
various types of defects having different shapes and sizes. In this paper, we describe the development of deep learning 
based segmentation algorithm for defect detection in MPT images. We have achieved a F2 score of 84.04% by using 
U-Net as the segmentation model and by utilizing a strong backbone network and an optimal loss function. 
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1. Introduction

Magnetic Particle Testing (MPT) is used the leakage
flux generated in cracks, holes, and internal defects when 
magnetizing a ferromagnetic material. By scattering the 
fluorescent magnetic powder while the test target is 
magnetized, the magnetic powder is attracted to the 
leakage magnetic flux generated in the defect. In that way, 
defects are highlighted to help visual confirmation.  

Defects in MPT have various shapes such as circular, 
linear, etc. In addition, magnetic particles are also 
adsorbed on the irregularities other than defects, the 
residual magnetism, and the boundaries of the metal 
structure, and they have the property of forming "pseudo 
patterns". MPT provides very good defect resolution and 
is used extensively on: welded fabrications in magnetic 
material, castings, locating fatigue cracks in items subject 
to cyclical stress. However, cleaning and 
demagnetization are required when performing 
inspection, and development of automation technology is 
required to reduce work load and improve efficiency. 

. 

Regarding the identification of fatigue cracks of the 
target item, it is easy to check whether it is normal or 
abnormal, and it is possible to inspect it on the line. 
Therefore, automation has been realized by high-
resolution cameras and image processing technologies 
such as binarization and thinning. However, in the field 
of welding processing of magnetic materials such as 
buildings and facilities, the surface condition is poor, and 
therefore many pseudo patterns occur. Moreover, since 
the shooting environment cannot be completely fixed, the 
difference in images is large. For the above reasons, 
image analysis has been difficult and automation has not 
been realized. 

In recent years, research on anomaly detection areas 
by deep learning has made remarkable progress. There 
are many approaches such as binary classification of 
abnormal and normal, classification of abnormal data, 
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GAN[1] and VAE[2] that learns only normal data and 
detects abnormal data, detection of abnormal areas by 
object detection method and segmentation. They are 
highly accurate and have already been put to practical use 
in many fields. As described above, anomaly detection 
by deep learning is highly reliable. We believe that the 
effective use of deep learning can realize the automation 
of MPT, which has been considered difficult to detect 
defects.  

In this paper, we discuss a deep learning based 
segmentation algorithm for the MPT automation. Based 
on U-Net, we apply an effective backbone network and 
loss function, and describe its effectiveness. 

2. Datasets 

2.1. Dataset 

In this article, we use images taken in the field 
inspection of the welding fabrications of magnetic 
materials. The image size is 4608 x 3456 pixels (138 
images) and 4000 x 2256 pixels (35 images). However, 
the defect area is very small for the image, which is too 
large to apply the deep learning model. Therefore, the 
area including the defect is cropped, and the training and 
testing are executed. The procedure for creating a data set 
is as follows. 
 
1. The original image is cropped at the size of 512  

x 512 pixels including defects (total 173 images). An 
example of the generated images is shown in Fig.1 (a). 
When cropping, we consider not to have all the defects in 
the same position. 
2. In the cropped image, the label images were created by 
annotating the defect area in detail using labeling 
technique. An example of annotation of the defect images 
is shown in Fig.1. 
 

2.2. Type of defects 

The dataset includes defects of various sizes and shapes, 
from 5 mm to 150 mm with circular, linear, and so on. 
Circular and near-circular defects with the size of 5 mm 
to 10 mm are the most common, followed by linear 
defects with the size of 20 mm to 50 mm. It also contains 
a small number of linear defects of about 150 mm and 
defects that do not fit any of them. Fig.2 shows an 
example of defects. 
 

3. Methods 

We adopted U-Net[3] as the segmentation model. The 
detection score is improved by changing the encoder and 
applying the loss function considering the balance 
between classes. This section gives an overview of our 
approach. 
 

3.1.  Models 

U-Net is a state-of-the-art semantic segmentation 
method with an encoder/decoder architecture. These 
encoder/decoder architectures use skip connections to 
preserve the location information lost due to 
convolutions, allowing for more precise output. Also, 
instead of using the original U-Net encoder, we use 
EfficientNet[4], which claims to be balanced between 
network depth, width, and resolution. 

EfficientNet is available with different versions, starts 
from B0 at 5.3 million parameters to B7 at 66 million. 
Subsequent results show that a deeper encoder is not 
needed, so the subsequent experiments will be performed 
with a smaller encoder (EfficientNet B1). 
We speed up the training process with pre-trained 
weights. Although it was trained on ImageNet, which is 
a database of natural images, the pre-trained weights do 
improve the training and local validation scores. 
 

3.2. The loss function 

Since the defects in MPT images are very small, training 
is greatly affected by the balance between the 

 
(a)                            (b)                                       (c) 

 
Fig. 2. Examples of defect types. (a) Circular and near circular 
defects, (b) linear defects, and (c) large linear defects. 

  
(a)                                             (b) 

 
Fig. 1. Examples of annotation of defect image. (a) An image 
including defects and (b) a label image are shown. 
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background and defect classes. Therefore, it is desirable 
to use a loss function suitable for the target. 

In the task of segmentation, Dice score coefficient 
(DSC) is commonly used. The 2-class DSC variant for 
class c is expressed in Equation 1, where g_ic∈{0,1} and 
p_ic∈{0,1} represent the ground truth label and the 
predicted label, respectively. The total number of pixels 
in an image is denoted by N. The ϵ provides numerical 
stability to prevent division by zero. 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐 =
∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑔𝑔𝑖𝑖𝑐𝑐 + 𝜖𝜖𝑁𝑁
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖𝑐𝑐 + 𝑔𝑔𝑖𝑖𝑐𝑐 + 𝜖𝜖𝑁𝑁
𝑖𝑖=1

                                              (1) 

The linear Dice loss (DL) is therefore defined as a 
minimization of the overlap between the prediction and 
ground truth: 
 

𝐷𝐷𝐷𝐷𝑐𝑐 = � 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐
𝑐𝑐

                                                         (2) 

One of the limitations of the Dice loss function is that it 
equally weighs false positive (FP) and false negative 
(FN) detections. In practice, this results in segmentation 
maps with high precision but low recall. With highly 
imbalanced data and small ROIs such as small defects, 
FN detections need to be weighted higher than FPs to 
improve recall rate. The Tversky similarity index is a 
generalization of the Dice score which allows for 
flexibility in balancing FP and FNs: 
 

𝑇𝑇𝑇𝑇𝑐𝑐 =
∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑔𝑔𝑖𝑖𝑐𝑐𝑁𝑁
𝑖𝑖=1 + 𝜖𝜖

∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑔𝑔𝑖𝑖𝑐𝑐𝑁𝑁
𝑖𝑖=1 + 𝛼𝛼 ∑ 𝑝𝑝𝑖𝑖𝑐𝑐̅𝑔𝑔𝑖𝑖𝑐𝑐𝑁𝑁

𝑖𝑖=1 + 𝛽𝛽 ∑ 𝑝𝑝𝑖𝑖𝑐𝑐𝑔𝑔𝑖𝑖𝑐𝑐̅𝑁𝑁
𝑖𝑖=1 + 𝜖𝜖

    

(3) 

where, 𝑝𝑝𝑖𝑖𝑐𝑐 is the probability that pixel 𝑖𝑖 is of the lesion 
class 𝑐𝑐  and 𝑝𝑝𝑖𝑖𝑐𝑐̅  is the probability pixel 𝑖𝑖  is of the non-
lesion class, c¯. The same is true for gic and gic¯, 
respectively. Hyperparameters 𝛼𝛼 and 𝛽𝛽 can be tuned to 
shift the emphasis to improve recall in the case of large 
class imbalance. The Tversky index is adapted to a loss 
function (TL) in [6] by minimizing ∑ 1 − 𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐 . 
 

4. Experiments and results 

To detect a defect region on a sequential image, we 
mainly conducted two experiments.  
1. Experiment to verify the effectiveness when using 
EfficientNet as U-Net encoder and to determine the 
optimal EfficientNet version. 
2. Experiment to verify the effectiveness of Tversky loss 
compared to Dice loss. For Tversky loss, we search for 
optimal 𝛼𝛼 and 𝛽𝛽 values. 
 
 We used 80% of the dataset for training and 20% for 
testing. When partitioning the dataset, we took care to 
ensure that the defect types (circular, linear, large defects, 
etc.) are even. We trained for 500 epochs with batch size 
of 2 and evaluated using the weight that gave the highest 
score. Also, we used Adam as an optimization algorithm 
and trained with an initial learning rate of 0.001. We used 
precision and recall, F1 score, which is the harmonic 
mean of them, and F2 score, which emphasizes recall, as 
evaluation functions. 
 The results of each experiment are shown in Table.1 and 
Table.2. From the Table.1, by using EfficientNet as the 
encoder of U-Net, both the precision and recall improved. 
In addition, among the models used, EfficientNet B1 
achieved the highest score in both precision and recall, 
and we did not see any improvement by increasing the 

Table. 1. Quantitative result of using different backbone network for U-Net encoder. In addition to the original encoder and EfficientNet 
B1 to B4, these show the results of experiments with ResNeXt50[5]. 
 
Models Precision Recall F1 F2 
U-Net 0.7147 0.7390 0.6980 0.7156 
U-Net + EfficientNetB1 0.8166 0.7929 0.7933 0.7904 
U-Net + EfficientNetB2 0.8085 0.7718 0.7777 0.7716 
U-Net + EfficientNetB3 0.7886 0.7898 0.7712 0.7784 
U-Net + EfficientNetB4 0.8143 0.7817 0.7865 0.7811 
U-Net + ResNeXt50 0.7490 0.7500 0.7227 0.7362 
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version. It shows that deeper encoders are not needed in 
the segmentation of MPT defects. We also found that 
using EfficientNet as the backbone is more effective than 
ResNeXt50. 

From Table.2, it was found that using Tversky loss 
instead of Dice loss improves Recall and F2 score. It is 
considered that the weighting of FN detection higher than 
that of FP led to improvement in recall. The highest F2 
score was obtained when 𝛼𝛼 = 0.7  and  𝛽𝛽 = 0.3 . Fig.2 
shows a comparison of output images when using Dice 
loss and Tversky loss. We obtained better output results 
when using Tversky loss. 

5. Discussion and conclusions 

We examined the defect segmentation method using the 
MPT defect dataset. It was verified that the EfficienNet 
used as the backbone of U-Net is effective and does not 
require a large model holding a large number of 
parameters. It was also shown that Tversky loss is 
effective in advancing the training of MPT defect dataset. 
 In this paper, we focused only on the areas containing 
defects, but we need to consider an approach to normal 
areas. Therefore, we created normal area images dataset 
from the original images described in Section 2. We 
prepared about 3000 normal images of 512 x 512 pixels. 
For those normal images, we tested using the 
segmentation model built in Section 3. Images that could 
be recognized as normal were not over-detected, and 
there was no false detection of pseudo-patterns or other 
noise that did not resemble defects. However, there were 
several cases in which the pseudo patterns similar to 
defects were erroneously detected. We need to improve 
them. 
 As the countermeasure, it is possible to include normal 
images in the training dataset. However, it is considered 
that the inclusion of normal images that has not been 
erroneously detected causes a decrease in detection 

accuracy. Therefore, we are mainly considering the 
following approaches. 
i) Include normal images with remarkable pseudo 
patterns in the training dataset. 
ii) Build a model to classify normal and abnormal and 
ensemble with our segmentation model. The approach to 
the normal area is important, and we would like to work 
on it in the future. 

We developed a deep learning based segmentation 
algorithm for MPT defects. We achieved an F2 score of 
84.08% by utilizing the backbone network and the loss 
function that facilitates optimization. In the future, we 
would like to consider the approach to the normal area. 
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